Sync: The Emerging Science of Spontaneous Order
At the heart of the universe is a steady, insistent beat, the sound of cycles in sync. Along the tidal rivers of Malaysia, thousands of fireflies congregate and flash in unison; the moon spins in perfect resonance with its orbit around the earth; our hearts depend on the synchronous firing of ten thousand pacemaker cells. While the forces that synchronize the flashing of fireflies may seem to have nothing to do with our heart cells, there is in fact a deep connection.

Synchrony is a science in its infancy, and Strogatz is a pioneer in this new frontier in which mathematicians and physicists attempt to pinpoint just how spontaneous order emerges from chaos. From underground caves in Texas where a French scientist spent six months alone tracking his sleep-wake cycle, to the home of a Dutch physicist who in 1665 discovered two of his pendulum clocks swinging in perfect time, this fascinating book spans disciplines, continents, and centuries. Engagingly written for readers of books such as Chaos and The Elegant Universe, Sync is a tour-de-force of nonfiction writing.
1111832633
Sync: The Emerging Science of Spontaneous Order
At the heart of the universe is a steady, insistent beat, the sound of cycles in sync. Along the tidal rivers of Malaysia, thousands of fireflies congregate and flash in unison; the moon spins in perfect resonance with its orbit around the earth; our hearts depend on the synchronous firing of ten thousand pacemaker cells. While the forces that synchronize the flashing of fireflies may seem to have nothing to do with our heart cells, there is in fact a deep connection.

Synchrony is a science in its infancy, and Strogatz is a pioneer in this new frontier in which mathematicians and physicists attempt to pinpoint just how spontaneous order emerges from chaos. From underground caves in Texas where a French scientist spent six months alone tracking his sleep-wake cycle, to the home of a Dutch physicist who in 1665 discovered two of his pendulum clocks swinging in perfect time, this fascinating book spans disciplines, continents, and centuries. Engagingly written for readers of books such as Chaos and The Elegant Universe, Sync is a tour-de-force of nonfiction writing.
30.0 In Stock
Sync: The Emerging Science of Spontaneous Order

Sync: The Emerging Science of Spontaneous Order

by Steven H. Strogatz
Sync: The Emerging Science of Spontaneous Order

Sync: The Emerging Science of Spontaneous Order

by Steven H. Strogatz

Hardcover

$30.00 
  • SHIP THIS ITEM
    In stock. Ships in 1-2 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

At the heart of the universe is a steady, insistent beat, the sound of cycles in sync. Along the tidal rivers of Malaysia, thousands of fireflies congregate and flash in unison; the moon spins in perfect resonance with its orbit around the earth; our hearts depend on the synchronous firing of ten thousand pacemaker cells. While the forces that synchronize the flashing of fireflies may seem to have nothing to do with our heart cells, there is in fact a deep connection.

Synchrony is a science in its infancy, and Strogatz is a pioneer in this new frontier in which mathematicians and physicists attempt to pinpoint just how spontaneous order emerges from chaos. From underground caves in Texas where a French scientist spent six months alone tracking his sleep-wake cycle, to the home of a Dutch physicist who in 1665 discovered two of his pendulum clocks swinging in perfect time, this fascinating book spans disciplines, continents, and centuries. Engagingly written for readers of books such as Chaos and The Elegant Universe, Sync is a tour-de-force of nonfiction writing.

Product Details

ISBN-13: 9780786868445
Publisher: Grand Central Publishing
Publication date: 03/05/2003
Pages: 352
Product dimensions: 6.12(w) x 9.25(h) x (d)
Age Range: 13 - 18 Years

About the Author

Steven Strogatz received his doctorate from Harvard University and served on the faculties of Harvard and MIT before becoming a professor of applied mathematics at Cornell Universitty in 1994. Widely recognized for his groundbreaking discoveries in chaos and complexity theory, he has received numerous awards throughout his career, including MIT's highest teaching prize and a Presidential Young Investigator Award from the White House. He lives in Ithaca, New York, with his wife, Carol, and their two daughters, Leah and Joanna.

Read an Excerpt

Preface

At the heart of the universe is a steady, insistent beat: the sound of cycles in sync. It pervades nature at every scale from the nucleus to the cosmos. Every night along the tidal rivers of Malaysia, thousands of fireflies congregate in the mangroves and flash in unison, without any leader or cue from the environment. Trillions of electrons march in lockstep in a superconductor, enabling electricity to flow through it with zero resistance. In the solar system, gravitational synchrony can eject huge boulders out of the asteroid belt and toward Earth; the cataclysmic impact of one such meteor is thought to have killed the dinosaurs. Even our bodies are symphonies of rhythm, kept alive by the relentless, coordinated firing of thousands of pacemaker cells in our hearts. In every case, these feats of synchrony occur spontaneously, almost as if nature has an eerie yearning for order.

And that raises a profound mystery: Scientists have long been baffled by the existence of spontaneous order in the universe. The laws of thermodynamics seem to dictate the opposite, that nature should inexorably degenerate toward a state of greater disorder, greater entropy. Yet all around us we see magnificent structures — galaxies, cells, ecosystems, human beings — that have somehow managed to assemble themselves. This enigma bedevils all of science today. Only in a few situations do we have a clear understanding of how order arises on its own. The first case to yield was a particular kind of order in physical space involving perfectly repetitive architectures. It's the kind of order that occurs whenever the temperature drops below the freezing point and trillions of water molecules spontaneously lock themselves into a rigid, symmetrical crystal of ice. Explaining order in time, however, has proved to be more problematic. Even the simplest possibility, where the same things happen at the same times, has turned out to be remarkably subtle. This is the order we call synchrony.

It may seem at first that there's little to explain. You can agree to meet a friend at a restaurant, and if both of you are punctual, your arrivals will be synchronized. An equally mundane kind of synchrony is triggered by a reaction to a common stimulus. Pigeons startled by a car backfiring will all take off at the same time, and their wings may even flap in sync for a while, but only because they reacted the same way to the same noise. They're not actually communicating about their flapping rhythm and don't maintain their synchrony after the first few seconds. Other kinds of transient sync can arise by chance. On a Sunday morning, the bells of two different churches may happen to ring at the same time for a while, and then drift apart. Or while sitting in your car, waiting to turn at a red light, you might notice that your blinker is flashing in perfect time with that of the car ahead of you, at least for a few beats. Such sync is pure coincidence, and hardly worth noting.

The impressive kind of sync is persistent. When two things keep happening simultaneously for an extended period of time, the synchrony is probably not an accident. Such persistent sync comes easily to us human beings, and, for some reason, it often gives us pleasure. We like to dance together, sing in a choir, play in a band. In its most refined form, persistent sync can be spectacular, as in the kickline of the Rockettes or the matched movements of synchronized swimmers. The feeling of artistry is heightened when the audience has no idea where the music is going next, or what the next dance move will be. We interpret persistent sync as a sign of intelligence, planning, and choreography.

So when sync occurs among unconscious entities like electrons or cells, it seems almost miraculous. It's surprising enough to see animals cooperating — thousands of crickets chirping in unison on a summer night; the graceful undulating of schools of fish — but it's even more shocking to see mobs of mindless things falling into step by themselves. These phenomena are so incredible that some commentators have been led to deny their existence, attributing them to illusions, accidents, or perceptual errors. Other observers have soared into mysticism, attributing sync to supernatural forces in the cosmos.

Until just a few years ago, the study of synchrony was a splintered affair, with biologists, physicists, mathematicians, astronomers, engineers, and sociologists laboring in their separate fields, pursuing seemingly independent lines of inquiry. Yet little by little, a science of sync has begun coalescing out of insights from these and other disciplines. This new science centers on the study of "coupled oscillators." Groups of fireflies, planets, or pacemaker cells are all collections of oscillators — entities that cycle automatically, that repeat themselves over and over again at more or less regular time intervals. Fireflies flash; planets orbit; pacemaker cells fire. Two or more oscillators are said to be coupled if some physical or chemical process allows them to influence one another. Fireflies communicate with light. Planets tug on one another with gravity. Heart cells pass electrical currents back and forth. As these examples suggest, nature uses every available channel to allow its oscillators to talk to one another. And the result of those conversations is often synchrony, in which all the oscillators begin to move as one.

Those of us working in this emerging field are asking such questions as: How exactly do coupled oscillators synchronize themselves, and under what conditions? When is sync impossible and when is it inevitable? What other modes of organization are to be expected when sync breaks down? And what are the practical implications of all that we're trying to learn?

Copyright © 2003 Steven Strogatz

From the B&N Reads Blog

Customer Reviews