Computer Networks / Edition 5

Computer Networks / Edition 5

ISBN-10:
0132126958
ISBN-13:
9780132126953
Pub. Date:
09/27/2010
Publisher:
Pearson Education
ISBN-10:
0132126958
ISBN-13:
9780132126953
Pub. Date:
09/27/2010
Publisher:
Pearson Education
Computer Networks / Edition 5

Computer Networks / Edition 5

Paperback

$283.72
Current price is , Original price is $283.72. You
$283.72 
  • SHIP THIS ITEM
    In stock. Ships in 6-10 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

  • SHIP THIS ITEM

    Temporarily Out of Stock Online

    Please check back later for updated availability.


Overview

Computer Networks, 5/e is appropriate for Computer Networking or Introduction to Networking courses at both the undergraduate and graduate level in Computer Science, Electrical Engineering, CIS, MIS, and Business Departments.

Tanenbaum takes a structured approach to explaining how networks work from the inside out. He starts with an explanation of the physical layer of networking, computer hardware and transmission systems; then works his way up to network applications. Tanenbaum's in-depth application coverage includes email; the domain name system; the World Wide Web (both client- and server-side); and multimedia (including voice over IP, Internet radio video on demand, video conferencing, and streaming media. Each chapter follows a consistent approach: Tanenbaum presents key principles, then illustrates them utilizing real-world example networks that run through the entire book—the Internet, and wireless networks, including Wireless LANs, broadband wireless and Bluetooth. The Fifth Edition includes a chapter devoted exclusively to network security. The textbook is supplemented by a Solutions Manual, as well as a Website containing PowerPoint slides, art in various forms, and other tools for instruction, including a protocol simulator whereby students can develop and test their own network protocols.


Product Details

ISBN-13: 9780132126953
Publisher: Pearson Education
Publication date: 09/27/2010
Series: Pearson Custom Computer Science Series
Pages: 960
Product dimensions: 7.10(w) x 9.20(h) x 1.50(d)

About the Author

Andrew S. Tanenbaum is a Professor of Computer Science at Vrije Universiteteit, Amsterdam, the Netherlands. He is a fellow of IEEE and ACM and a member of the Netherlands Royal Academy of Arts and Sciences. He recently won a prestigious European Research Council Advanced Grant of 2.5 million to do research on highly reliable computer systems. Tanenbaum has also authored or coauthored the following titles: Structured Computer Organization, Fifth Edition; Operating Systems: Design and Implementation, Third Edition; and Distributed Systems: Principles and Paradigms, Second Edition, all published by Prentice Hall.

David J. Wetherall is a Professor of Computer Science and Engineering at the University of Washington in Seattle. He hails from Australia and has worked in the area of networking for the past two decades. His research is focused on Internet protocols, wireless networks, and security. Wetherall's work has been recognized with a Sloan Fellowship, the IEEE Bennett Prize, and the ACM SIGCOMM Test-of-Time Award.

Read an Excerpt

Preface

This book is now in its fourth edition. Each edition has corresponded to a different phase in the way computer networks were used. When the first edition appeared in 1980, networks were an academic curiosity. When the second edition appeared in 1988, networks were used by universities and large businesses. When the third edition appeared in 1996, computer networks, especially the Internet, had become a daily reality for millions of people. The new item in the fourth edition is the rapid growth of wireless networking in many forms.

The networking picture has changed radically since the third edition. In the mid-1990s, numerous kinds of LANs and WANs existed, along with multiple protocol stacks. By 2003, the only wired LAN in widespread use was Ethernet, and virtually all WANs were on the Internet. Accordingly, a large amount of material about these older networks has been removed.

However, new developments are also plentiful. The most important is the huge increase in wireless networks, including 802.11, wireless local loops, 2G and 3G cellular networks, Bluetooth, WAP, i-mode, and others. Accordingly, a large amount of material has been added on wireless networks. Another newly-important topic is security, so a whole chapter on it has been added.

Although Chap. 1 has the same introductory function as it did in the third edition, the contents have been revised and brought up to date. For example, introductions to the Internet, Ethernet, and wireless LANs are given there, along with some history and background. Home networking is also discussed briefly.

Chapter 2 has been reorganized somewhat. After a brief introduction to the principles of datacommunication, there are three major sections on transmission (guided media, wireless, and satellite), followed by three more on important examples (the public switched telephone system, the mobile telephone system, and cable television). Among the new topics covered in this chapter are ADSL, broadband wireless, wireless MANs, and Internet access over cable and DOCSIS.

Chapter 3 has always dealt with the fundamental principles of point-to-point protocols. These ideas are essentially timeless and have not changed for decades. Accordingly, the series of detailed example protocols presented in this chapter is largely unchanged from the third edition.

In contrast, the MAC sublayer has been an area of great activity in recent years, so many changes are present in Chap. 4. The section on Ethernet has been expanded to include gigabit Ethernet. Completely new are major sections on wireless LANs, broadband wireless, Bluetooth, and data link layer switching, including MPLS.

Chapter 5 has also been updated, with the removal of all the ATM material and the addition of additional material on the Internet. Quality of service is now also a major topic, including discussions of integrated services and differentiated services. Wireless networks are also present here, with a discussion of routing in ad hoc networks. Other new topics include NAT and peer-to-peer networks.

Chap. 6 is still about the transport layer, but here, too, some changes have occurred. Among these is an example of socket programming. A one-page client and a one-page server are given in C and discussed. These programs, available on the book's Web site, can be compiled and run. Together they provide a primitive remote file or Web server available for experimentation. Other new topics include remote procedure call, RTP, and transaction/TCP.

Chap. 7, on the application layer, has been more sharply focused. After a short introduction to DNS, the rest of the chapter deals with just three topics: e-mail, the Web, and multimedia. But each topic is treated in great detail. The discussion of how the Web works is now over 60 pages, covering a vast array of topics, including static and dynamic Web pages, HTTP, CGI scripts, content delivery networks, cookies, and Web caching. Material is also present on how modern Web pages are written, including brief introductions to

Security has become so important that it has now been expanded to a complete chapter of over 100 pages.

It covers both the principles of security (symmetric- and public-key algorithms, digital signatures, and X.509 certificates) and the applications of these principles (authentication, e-mail security, and Web security). The chapter is both broad (ranging from quantum cryptography to government censorship) and deep (e.g., how SHA-1 works in detail).

Chapter 9 contains an all-new list of suggested readings and a comprehensive bibliography of over 350 citations to the current literature. Over 200 of these are to papers and books written in 2000 or later.

Computer books are full of acronyms. This one is no exception. By the time you are finished reading this one, the following should ring a bell: ADSL, AES, AMPS, AODV, ARP, ATM, BGP, CDMA, CDN, CGI, CIDR, DCF, DES, DHCP, DMCA, FDM, FHSS, GPRS, GSM, HDLC, HFC, HTML, HTTP, ICMP, IMAP, ISP, ITU, LAN, LMDS, MAC, MACA, MIME, MPEG, MPLS, MTU, NAP, NAT, NSA, NTSC, OFDM, OSPF, PCF, PCM, PGP, PHP, PKI, POTS, PPP, PSTN, QAM, QPSK, RED, RFC, RPC, RSA, RSVP, RTP, SSL, TCP, TDM, UDP, URL, UTP, VLAN, VPN, VSAT, WAN, WAP, WDMA, WEP, WWW, and

To help instructors using this book as a text for a course, the author has prepared various teaching aids, including


  • A problem solutions manual.
  • Files containing the figures in multiple formats.
  • PowerPoint sheets for a course using the book.
  • A simulator (written in C) for the example protocols of Chap. 3.
  • A Web page with links to many tutorials, organizations, FAQs, etc.

The solutions manual is available directly from Prentice Hall (but only to instructors, not to students).

All the other material is on the book's Web site:

http://www.phptr.com/tanenbaumcn4/

Table of Contents

  • CHAPTER 1 INTRODUCTION
  • CHAPTER 2 THE PHYSICAL LAYER
  • CHAPTER 3 THE DATA LINK LAYER
  • CHAPTER 4 THE MEDIUM ACCESS CONTROL SUBLAYER
  • CHAPTER 5 THE NETWORK LAYER
  • CHAPTER 6 THE TRANSPORT LAYER
  • CHAPTER 7 THE APPLICATION LAYER
  • CHAPTER 8 NETWORK SECURITY
  • CHAPTER 9 READING LIST AND BIBLIOGRAPHY

Preface

This book is now in its fourth edition. Each edition has corresponded to a different phase in the way computer networks were used. When the first edition appeared in 1980, networks were an academic curiosity. When the second edition appeared in 1988, networks were used by universities and large businesses. When the third edition appeared in 1996, computer networks, especially the Internet, had become a daily reality for millions of people. The new item in the fourth edition is the rapid growth of wireless networking in many forms.

The networking picture has changed radically since the third edition. In the mid-1990s, numerous kinds of LANs and WANs existed, along with multiple protocol stacks. By 2003, the only wired LAN in widespread use was Ethernet, and virtually all WANs were on the Internet. Accordingly, a large amount of material about these older networks has been removed.

However, new developments are also plentiful. The most important is the huge increase in wireless networks, including 802.11, wireless local loops, 2G and 3G cellular networks, Bluetooth, WAP, i-mode, and others. Accordingly, a large amount of material has been added on wireless networks. Another newly-important topic is security, so a whole chapter on it has been added.

Although Chap. 1 has the same introductory function as it did in the third edition, the contents have been revised and brought up to date. For example, introductions to the Internet, Ethernet, and wireless LANs are given there, along with some history and background. Home networking is also discussed briefly.

Chapter 2 has been reorganized somewhat. After a brief introduction to the principles of data communication, there arethree major sections on transmission (guided media, wireless, and satellite), followed by three more on important examples (the public switched telephone system, the mobile telephone system, and cable television). Among the new topics covered in this chapter are ADSL, broadband wireless, wireless MANs, and Internet access over cable and DOCSIS.

Chapter 3 has always dealt with the fundamental principles of point-to-point protocols. These ideas are essentially timeless and have not changed for decades. Accordingly, the series of detailed example protocols presented in this chapter is largely unchanged from the third edition.

In contrast, the MAC sublayer has been an area of great activity in recent years, so many changes are present in Chap. 4. The section on Ethernet has been expanded to include gigabit Ethernet. Completely new are major sections on wireless LANs, broadband wireless, Bluetooth, and data link layer switching, including MPLS.

Chapter 5 has also been updated, with the removal of all the ATM material and the addition of additional material on the Internet. Quality of service is now also a major topic, including discussions of integrated services and differentiated services. Wireless networks are also present here, with a discussion of routing in ad hoc networks. Other new topics include NAT and peer-to-peer networks.

Chap. 6 is still about the transport layer, but here, too, some changes have occurred. Among these is an example of socket programming. A one-page client and a one-page server are given in C and discussed. These programs, available on the book's Web site, can be compiled and run. Together they provide a primitive remote file or Web server available for experimentation. Other new topics include remote procedure call, RTP, and transaction/TCP.

Chap. 7, on the application layer, has been more sharply focused. After a short introduction to DNS, the rest of the chapter deals with just three topics: e-mail, the Web, and multimedia. But each topic is treated in great detail. The discussion of how the Web works is now over 60 pages, covering a vast array of topics, including static and dynamic Web pages, HTTP, CGI scripts, content delivery networks, cookies, and Web caching. Material is also present on how modern Web pages are written, including brief introductions to XML, XSL, XHTML, PHP, and more, all with examples that can be tested. The wireless Web is also discussed, focusing on i-mode and WAP. The multimedia material now includes MP3, streaming audio, Internet radio, and voice over IP.

Security has become so important that it has now been expanded to a complete chapter of over 100 pages.

It covers both the principles of security (symmetric- and public-key algorithms, digital signatures, and X.509 certificates) and the applications of these principles (authentication, e-mail security, and Web security). The chapter is both broad (ranging from quantum cryptography to government censorship) and deep (e.g., how SHA-1 works in detail).

Chapter 9 contains an all-new list of suggested readings and a comprehensive bibliography of over 350 citations to the current literature. Over 200 of these are to papers and books written in 2000 or later.

Computer books are full of acronyms. This one is no exception. By the time you are finished reading this one, the following should ring a bell: ADSL, AES, AMPS, AODV, ARP, ATM, BGP, CDMA, CDN, CGI, CIDR, DCF, DES, DHCP, DMCA, FDM, FHSS, GPRS, GSM, HDLC, HFC, HTML, HTTP, ICMP, IMAP, ISP, ITU, LAN, LMDS, MAC, MACA, MIME, MPEG, MPLS, MTU, NAP, NAT, NSA, NTSC, OFDM, OSPF, PCF, PCM, PGP, PHP, PKI, POTS, PPP, PSTN, QAM, QPSK, RED, RFC, RPC, RSA, RSVP, RTP, SSL, TCP, TDM, UDP, URL, UTP, VLAN, VPN, VSAT, WAN, WAP, WDMA, WEP, WWW, and XML. But don't worry. Each will be carefully defined before it is used.

To help instructors using this book as a text for a course, the author has prepared various teaching aids, including

  • A problem solutions manual.
  • Files containing the figures in multiple formats.
  • PowerPoint sheets for a course using the book.
  • A simulator (written in C) for the example protocols of Chap. 3.
  • A Web page with links to many tutorials, organizations, FAQs, etc.

The solutions manual is available directly from Prentice Hall (but only to instructors, not to students).

From the B&N Reads Blog

Customer Reviews