- Expanded coverage of the U-Pb methods –the most accurate available dating technique
- Applications to the petrogenesis of igneous rocks
- Summaries of the use of isotopic data for study of the oceans
- New examples from the fields of archeology and anthropology
- Radiation-damage methods of dating including fission tracks, thermoluminescence, and electron spin resonance (ESR)
- Information on the dispersal of fission-product radionuclides and the disposal of radioactive waste
- Extensive chapter-by-chapter problems and solutions
- Expanded coverage of the U-Pb methods –the most accurate available dating technique
- Applications to the petrogenesis of igneous rocks
- Summaries of the use of isotopic data for study of the oceans
- New examples from the fields of archeology and anthropology
- Radiation-damage methods of dating including fission tracks, thermoluminescence, and electron spin resonance (ESR)
- Information on the dispersal of fission-product radionuclides and the disposal of radioactive waste
- Extensive chapter-by-chapter problems and solutions


Hardcover(REV)
-
SHIP THIS ITEMIn stock. Ships in 1-2 days.PICK UP IN STORE
Your local store may have stock of this item.
Available within 2 business hours
Related collections and offers
Overview
- Expanded coverage of the U-Pb methods –the most accurate available dating technique
- Applications to the petrogenesis of igneous rocks
- Summaries of the use of isotopic data for study of the oceans
- New examples from the fields of archeology and anthropology
- Radiation-damage methods of dating including fission tracks, thermoluminescence, and electron spin resonance (ESR)
- Information on the dispersal of fission-product radionuclides and the disposal of radioactive waste
- Extensive chapter-by-chapter problems and solutions
Product Details
ISBN-13: | 9780471384373 |
---|---|
Publisher: | Wiley |
Publication date: | 10/18/2004 |
Edition description: | REV |
Pages: | 928 |
Product dimensions: | 7.80(w) x 9.30(h) x 1.90(d) |
About the Author
TERESA M. MENSING is associate professor in the Department of Geological Sciences at The Ohio State University at Marion.
Read an Excerpt
Isotopes
Principles and ApplicationsBy Gunter Faure Teresa M. Mensing
John Wiley & Sons
ISBN: 0-471-38437-2Chapter One
Nuclear Systematics
Isotope geology is concerned with the measurement and interpretation of the variations of the isotope composition of certain elements in natural materials. These variations are the result of two quite different processes:
1. the spontaneous decay of the nuclei of certain atoms to form stable nuclei of other elements and the accumulation of these radiogenic daughter atoms in the minerals in which they formed and
2. the enrichment (or depletion) of certain stable atoms of elements of low atomic number in the products of chemical reactions as a result of changes in state such as evaporation and condensation of water and during physical processes such as diffusion.
The interpretation of the changes in the isotope compositions of the affected elements has become a powerful source of information in all branches of the earth sciences. The use of this investigative tool requires a thorough understanding of geological, hydrological, biospheric, and atmospheric processes occurring on the Earth and elsewhere in the solar system. In addition, the interpretation of isotopic data requires knowledge of the relevant principles of atomic physics, physical chemistry, and biochemistry. The decay of unstable atoms is accompanied by the emission of nuclear particles and radiant energy, which togetherconstitute the phenomenon of radioactivity. The discovery of this process near the end of the nineteenth century was a milestone in the history physics and greatly increased our understanding of the Earth.
1.1 DISCOVERY OF RADIOACTIVITY
The rise of geology as a science is commonly associated with the work of James Hutton in Scotland. He emphasized the importance of very slow but continuously acting processes that shape the surface of the Earth. This idea conflicted with Catastrophism and foreshadowed the concept of Uniformitarianism, developed by Hutton in his book Theory of the Earth, published in 1785. His principal point was that the same geological processes occurring at the present time have shaped the history of the Earth in the past and will continue to do so in the future. He stated that he could find "no vestige of a beginning-no prospect of an end" for the Earth. Hutton's conclusion regarding the history of the Earth was not well received by his contemporaries. However, as time passed, geologists accepted the principle of Uniformitarianism, including the conviction that very long periods of time are required for the deposition of sedimentary rocks whose accumulated thickness amounts to many miles. In 1830, Charles Lyell published the first volumes of his Principles of Geology. By the middle of the nineteenth century, geologists seemed to be secure in their conviction that the Earth was indeed very old and that long periods of time are required for the deposition of the great thickness of sedimentary rocks that had been mapped in the field.
The apparent antiquity of the Earth and the principle of Uniformitarianism were unexpectedly attacked by William Thomson, better known as Lord Kelvin (Burchfield, 1975). Thomson was Britain's most prominent physicist during the second half of the nineteenth century. His invasion into geology profoundly influenced geological opinion regarding the age of the Earth for about 50 years. Between 1862 and 1899 Thomson published a number of papers in which he set a series of limits on the possible age of the Earth. His calculations were based on considerations of the luminosity of the Sun (Thomson, 1862), the cooling history of the Earth, and the effect of lunar tides on the rate of rotation of the Earth. He initially concluded that the Earth could not be much more than 100 million years old. In subsequent papers, he further reduced the age of the Earth. In 1897, Lord Kelvin (he was raised to peerage in 1892) delivered his famous lecture, "The Age of the Earth as an Abode Fitted for Life" (Thomson, 1899), in which he narrowed the possible age of the Earth to between 20 and 40 million years.
These and earlier estimates of the age of the Earth by Lord Kelvin and others were a serious embarrassment to geologists. Kelvin's arguments seemed to be irrefutable, and yet they were inconsistent with the evidence as interpreted by geologists on the basis of Uniformitarianism. Ironically, one year before Lord Kelvin presented his famous lecture, the French physicist Henri Becquerel (1896) had announced the discovery of radioactivity. Only a few years later it was recognized that the disintegration of radioactive elements is an exothermic process. Therefore, the natural radioactivity of rocks produces heat, and the Earth is not merely a cooling body, as Lord Kelvin had assumed in his calculation.
Becquerel's discoveries attracted the attention of several young scientists, among them Marie (Manya) Sklodowska who came to Paris in 1891 from her native Poland to study at the Sorbonne. On July 25, 1895, she married Pierre Curie, a physics professor at the Sorbonne. After Becquerel reported his discoveries regarding salts of uranium, Marie Curie decided to devote her doctoral dissertation to a systematic search to determine whether other elements and their compounds emit similar radiation (Curie, 1898). Her work was rewarded when she discovered that thorium is also an active emitter of penetrating radiation. Turning to natural uranium and thorium minerals, she noticed that these materials are far more active than the pure salts of these elements. This important observation suggested to her that natural uranium ore, such as pitchblende, should contain more powerful emitters of radiation than uranium. For this reason, Marie and Pierre Curie requested a quantity of uranium ore from the mines of Joachimsthal in Czechoslovakia and, in 1898, began a systematic effort to find the powerful emitter whose presence she had postulated. The search eventually led to the discovery of two new active elements, which they named polonium and radium. Marie Curie coined the word "radioactivity" on the basis of the emissions of radium. In 1903, the Curies shared the Nobel Prize for physics with Henri Becquerel for the discovery of radioactivity.
1.2 INTERNAL STRUCTURE OF ATOMS
Every atom contains a small, positively charged nucleus in which most of its mass is concentrated. The nucleus is surrounded by a cloud of electrons that are in motion around it. In a neutral atom, the negative charges of the electrons exactly balance the total positive charge of the nucleus. The diameters of atoms are of the order of [10.sup.-8] centimeters (cm) and are conveniently expressed in angstrom units (1 Å = [10.sup.-8] cm). The nuclei of atoms are about 10,000 times smaller than that and have diameters of [10.sup.-12] cm, or [10.sup.-4] Å. The density of nuclear matter is about 100 million tons per cubic centimeter. The nucleus contains a large number of different elementary particles that interact with each other and are organized into complex patterns within the nucleus. It will suffice for the time being to introduce only two of these, the proton (p) and the neutron (n), which are collectively referred to as nucleons. Protons and neutrons can be regarded as the main building blocks of the nucleus because they account for its mass and electrical charge. Briefly stated, a proton is a particle having a positive charge that is equal in magnitude but opposite in polarity to the charge of an electron. Neutrons have a slightly larger mass than protons and carry no electrical charge. Extranuclear neutrons are unstable and decay spontaneously to form protons and electrons with a "halflife" of 10.6 min. The other principal components of atoms are the electrons, which swarm around the nucleus. Electrons at rest have a small mass (1/1836.1 that of hydrogen atoms) and a negative electrical charge. The number of extranuclear electrons in a neutral atom is equal to the number of protons. The protons in the nucleus of an atom therefore determine how many electrons that atom can have when it is electrically neutral. The number of electrons and their distribution about the nucleus in turn determine the chemical properties of that atom.
1.2a Nuclear Systematics
The composition of atoms is described by specifying the number of protons and neutrons that are present in the nucleus. The number of protons (Z) is called the atomic number and the number of neutrons (N) is the neutron number. The atomic number Z also indicates the number of extra-nuclear electrons in a neutral atom. The sum of protons and neutrons in the nucleus of an atom is the mass number (A). The composition of the nucleus of an atom is represented by the simple relationship
(1.1) A = Z + N
Another word for atom that is widely used is nuclide. The composition of any nuclide can be represented by means of a shorthand notation consisting of the chemical symbol of the element, the mass number written as a superscript, and the atomic number written as a subscript. For example, [sup.14.sub.6]C identifies the nuclide as an atom of carbon having 6 protons (therefore 6 electrons in a neutral atom) and a total of 14 nucleons. Equation 1.1 indicates that the nucleus of this nuclide contains 14 - 6 = 8 neutrons. Similarly, [sup.23.sub.11]Na is a sodium atom having 11 protons and 23 - 11 = 12 neutrons. Actually, it is redundant to specify Z when the chemical symbol is used. For this reason, the subscript (Z) is sometimes omitted in informal usage.
A great deal of information about nuclides can be shown on a diagram in which each nuclide is represented by a square in coordinates Z and N. Figure 1.1 is a part of such a chart of the nuclides. Each element on this chart is represented by several nuclides having different neutron numbers arranged in a horizontal row. Atoms which have the same Z but different values of N are called isotopes. The isotopes of an element have identical chemical properties and differ only in their masses. Nuclides that occupy vertical columns on the chart of the nuclides have the same value of N but different values of Z and are called isotones. Isotones are therefore atoms of different elements. The chart also contains nuclides that occupy diagonal rows. These have the same value of A and are called isobars. Isobars have different values of Z and N and are therefore atoms of different elements. However, because they contain the same number of nucleons, they have similar but not identical masses.
1.2b Atomic Weights of Elements
The masses of atoms are too small to be conveniently expressed in grams. For this reason, the atomic mass unit (amu) is defined as one-twelfth of the mass of [sup.12.sub.6]C. In other words, the mass of [sup.12.sub.6]C is arbitrarily fixed at 12.00 ... amu, and the masses of all other nuclides and subatomic particles are expressed by comparison to that of [sup.12.sub.6]C. The masses of the isotopes of the elements have been measured by mass spectrometry and are known with great precision and accuracy.
The total number of different nuclides is close to 2500, but only 270 of these are stable, including long-lived radioactive isotopes that still occur naturally because of their slow rate of decay. The stable nuclides, along with a small number of naturally occurring long-lived unstable nuclides, make up the elements in the periodic table. Many elements have two or more naturally occurring isotopes, some have only one, and two elements (technetium and promethium) have none. These two elements therefore do not occur naturally on the Earth. However, they have been identified in the optical spectra of certain stars where they are synthesized by nuclear reactions.
The relative proportions of the naturally occurring isotopes of an element are expressed in terms of percent by number. For example, the statement that the isotopic abundance of [sup.85.sub.37]Rb is 72.15 percent means that in a sample of 10,000 Rb atoms 7215 are the isotope [sup.85.sub.37]Rb. When the masses of the naturally occurring isotopes of an element and their abundances are known, the atomic weight of that element can be calculated. The atomic weight of an element is the sum of the masses of its naturally occurring isotopes weighted in accordance with the abundance of each isotope expressed as a decimal fraction. For example, the atomic weight of chlorine (Cl) is calculated from the masses and abundances of its two naturally occurring isotopes:
Isotope Mass × Abundance
[sup.35.sub.17]Cl 34.96885 × 0.7577 = 26.4958
[sup.35.sub.17]Cl 36.96590 × 0.2423 = 8.9568
Atomic weight = 35.4526 amu
The abundances of the naturally occurring isotopes of the elements and their measured masses are listed in tables such as those of the Handbook of Chemistry and Physics (Lide and Frederikse, 1995).
Although the atomic weights of the elements are expressed in atomic mass units, it is convenient to define the gram atomic weight, or mole, which is the atomic weight of an element in grams. One mole of an atom or a compound contains a fixed number of atoms or molecules, respectively. The number of atoms or molecules in one mole is given by Avogadro's number, which is equal to 6.022045 × [10.sup.23] atoms or molecules per mole.
1.2c Binding Energy of Nucleus
The definition of the atomic mass unit provides an opportunity to calculate the mass of a particular nuclide by adding the masses of protons + electrons ([M.sub.H] = 1.00782503 amu) and of the neutrons ([M.sub.n] = 1.00866491 amu) of which it is composed. These calculated masses are consistently greater than the measured masses. It appears, therefore, that the mass of an atom is less than the sum of its parts. This phenomenon is an important clue to an understanding of the nature of the atomic nucleus. The explanation of the observed mass defect is that some of the mass of the nuclear particles is converted into binding energy that holds the nucleus together. The binding energy ([E.sub.B]) is calculated by means of Einstein's equation:
(1.2) [E.sub.B] = [DELTA]m [c.sup.2]
where [DELTA]m is the mass defect and c is the speed of light in a vacuum (2.99792458 × [10.sup.10] cm/s).
The calculation of the binding energy requires a review of the relationship between units of mass and energy. The basic unit of energy in the cgs system (centimeter, gram, second) is the erg. However, the amount of energy released by a nuclear reaction involving a single atom is only a small fraction of one erg.
Continues...
Excerpted from Isotopes by Gunter Faure Teresa M. Mensing Excerpted by permission.
All rights reserved. No part of this excerpt may be reproduced or reprinted without permission in writing from the publisher.
Excerpts are provided by Dial-A-Book Inc. solely for the personal use of visitors to this web site.
Table of Contents
Preface xxvPart I Principles of Atomic Physics 1
1 Nuclear Systematics 3
1.1 Discovery of Radioactivity 3
1.2 Internal Structure of Atoms 4
1.3 Origin of the Elements 12
1.4 Summary 14
References 14
2 Decay Modes of Radionuclides 15
2.1 Beta-Decay 15
2.2 Alpha-Decay 24
2.3 Spontaneous and Induced Fission 28
2.4 Summary 33
References 33
3 Radioactive Decay 34
3.1 Law of Radioactivity 34
3.2 Radiation Detectors 37
3.3 Growth of Radioactive Daughters 39
3.4 Units of Radioactivity and Dosage 42
3.5 Medical Effects of Ionizing Radiation 43
3.6 Sources of Environmental Radioactivity 46
3.7 Nuclear Reactions 47
3.8 Neutron Activation Analysis 47
3.9 Summary 53
References 53
4 Geochronometry 55
4.1 Growth of Radiogenic Daughters 55
4.2 Assumptions for Dating 57
4.3 Fitting of Isochrons 60
4.4 Mass Spectrometry and Isotope Dilution 64
4.5 Summary 71
References 71
Part II Radiogenic Isotope Geochronometers 73
5 The Rb–Sr Method 75
5.1 Geochemistry of Rb and Sr 75
5.2 Principles of Dating 76
5.3 Rb–Sr Isochrons 80
5.4 Dating Metamorphic Rocks 89
5.5 Dating Sedimentary Rocks 95
5.6 Summary 106
References 107
6 The K–Ar Method 113
6.1 Principles and Methodology 113
6.2 Retention of 40Ar by Minerals 115
6.3 K–Ar Isochrons 120
6.4 Volcanic Rocks of Tertiary Age 121
6.5 Dating Sedimentary Rocks 126
6.6 Metamorphic Veil 132
6.7 Precambrian Timescales 134
6.8 Summary 138
References 138
7 The 40Ar*/ 39Ar Method 144
7.1 Principles and Methodology 144
7.2 Incremental Heating Technique 147
7.3 Excess 40Ar 151
7.4 Argon Isotope Correlation Diagram 153
7.5 Laser Ablation 157
7.6 Sedimentary Rocks 159
7.7 Metasedimentary Rocks 162
7.8 Metamorphic Rocks: Broken Hill, N.S.W., Australia 166
7.9 Thermochronometry: Haliburton Highlands, Ontario, Canada 1
7.10 Summary 171
References 172
8 The K–Ca Method 180
8.1 Principles and Methodology 180
8.2 Isotope Geochemistry of Calcium 183
8.3 Summary 190
References 191
9 The Sm–Nd Method 194
9.1 Geochemistry of Sm and Nd 194
9.2 Principles and Methodology 197
9.3 Dating by the Sm–Nd Method 202
9.4 Meteorites and Martian Rocks 207
9.5 Lunar Rocks 209
9.6 Summary 211
References 211
10 The U–Pb, Th–Pb, and Pb–Pb Methods 214
10.1 Geochemistry of U and Th 214
10.2 Decay of U and Th Isotopes 215
10.3 Principles and Methodology 218
10.4 U,Th–Pb Dates, Boulder Creek Batholith, Colorado 221
10.5 Wetherill’s Concordia 223
10.6 Alternative Pb Loss Models 227
10.7 Refinements in Analytical Methods 230
10.8 Dating Detrital Zircon Grains 233
10.9 Tera–Wasserburg Concordia 236
10.10 U–Pb, Th–Pb, and Pb–Pb Isochrons (Granite Mountains, Wyoming) 240
10.11 Pb–Pb Dating of Carbonate Rocks 242
10.12 U–Pb and Th–Pb Isochrons of Carbonate Rocks 245
10.13 Summary 249
References 250
11 The Common-Lead Method 256
11.1 The Holmes–Houtermans Model 256
11.2 Dating Common Lead 261
11.3 Dating K-Feldspar 268
11.4 Anomalous Leads in Galena 270
11.5 Lead–Zinc Deposits, Southeastern Missouri 274
11.6 Multistage Leads 279
11.7 Summary 280
References 281
12 The Lu–Hf Method 284
12.1 Geochemistry of Lu and Hf 284
12.2 Principles and Methodology 286
12.3 CHUR and Epsilon 288
12.4 Model Hf Dates Derived from CHUR 289
12.5 Applications of Lu–Hf Dating 290
12.6 Summary 294
References 294
13 The Re–Os Method 297
13.1 Rhenium and Osmium in Terrestrial and Extraterrestrial Rocks 297
13.2 Principles and Methodology 301
13.3 Molybdenite and 187Re–187Os Isochrons 302
13.4 Meteorites and CHUR-Os 305
13.5 The Cu–Ni Sulfide Ores, Noril’sk, Siberia 310
13.6 Origin of Other Sulfide Ore Deposits 312
13.7 Metallic PGE Minerals 313
13.8 Gold Deposits of the Witwatersrand, South Africa 314
13.9 The Pt–Os Method 316
13.10 Summary 317
References 317
14 The La–Ce Method 322
14.1 Geochemistry of La and Ce 323
14.2 Principles and Methodology 324
14.3 La–Ce Isochrons 327
14.4 Meteorites and CHUR-Ce 329
14.5 Volcanic Rocks 331
14.6 Cerium in the Oceans 332
14.7 Summary 337
References 338
15 The La–Ba Method 340
15.1 Geochemistry of La and Ba 340
15.2 Principles and Methodology 341
15.3 Amitsoq Gneiss, West Greenland 342
15.4 Mustikkamaki Pegmatite, Finland 343
15.5 Summary 343
References 343
Part III Geochemistry of Radiogenic Isotopes 345
16 Mixing Theory 347
16.1 Chemical Compositions of Mixtures 347
16.2 Isotopic Mixtures of Sr 350
16.3 Isotopic Mixtures of Sr and Nd 352
16.4 Three-Component Isotopic Mixtures 355
16.5 Applications 356
16.6 Summary 361
References 361
17 Origin of Igneous Rocks 363
17.1 The Plume Theory 363
17.2 Magma Sources in the Mantle 364
17.3 Midocean Ridge Basalt 365
17.4 Basalt and Rhyolite of Iceland 369
17.5 The Hawaiian Islands 375
17.6 HIMU Magma Sources of Polynesia 380
17.7 Subduction Zones 382
17.8 Continental Flood Basalt 389
17.9 Alkali-Rich Lavas 394
17.10 Origin of Granite 399
17.11 Summary 405
References 406
18 Water and Sediment 412
18.1 Strontium in Streams 412
18.2 Sediment in Streams 419
18.3 Zaire and Amazon Rivers 426
18.4 Summary 433
References 433
19 The Oceans 436
19.1 Strontium in the Phanerozoic Oceans 436
19.2 Strontium in the Precambrian Oceans 447
19.3 Neodymium in the Oceans 451
19.4 Lead in the Oceans 463
19.5 Osmium in Continental Runoff 470
19.6 Osmium in the Oceans 475
19.7 Hafnium in the Oceans 480
19.8 Summary 486
References 487
Part IV Short-Lived Radionuclides 495
20 Uranium/Thorium-Series Disequilibria 497
20.1 238U/234U–230Th-Series Geochronometers 498
20.2 Radium 508
20.3 Protactinium 516
20.4 Lead-210 521
20.5 Archeology and Anthropology 527
20.6 Volcanic Rocks 531
20.7 Magma Formation 535
20.8 Summary 539
References 540
21 Helium and Tritium 546
21.1 U–Th/He Method of Dating 546
21.2 Thermochronometry 551
21.3 He Dating of Iron-Ore Deposits 554
21.4 Tritium–3He Dating 555
21.5 Meteorites and Oceanic Basalt 560
21.6 Continental Crust 566
21.7 Summary 571
References 572
22 Radiation-Damage Methods 577
22.1 Alpha-Decay 577
22.2 Fission Tracks 580
22.3 Applications of Fission-Track Dates 592
22.4 Thermoluminescence 595
22.5 Electron-Spin Resonance 603
22.6 Summary 606
References 608
23 Cosmogenic Radionuclides 613
23.1 Carbon-14 (Radiocarbon) 614
23.2 Beryllium-10 and Aluminum-26 (Atmospheric) 625
23.3 Exposure Dating (10Be and 26Al) 633
23.4 Cosmogenic and Thermonuclear 36Cl 639
23.5 Meteorites 641
23.6 Other Long-Lived Cosmogenic Radionuclides 646
23.7 Summary 646
References 647
24 Extinct Radionuclides 654
24.1 The Pd–Ag Chronometer 655
24.2 The Al–Mg Chronometer 657
24.3 The Hf–W Chronometer 659
24.4 FUN in the Solar Nebula 662
24.5 Summary 663
References 664
25 Thermonuclear Radionuclides 667
25.1 Fission Products and Transuranium Elements 667
25.2 Strontium-90 in the Environment 672
25.3 Cesium-137 in the Environment 678
25.4 Arctic Ocean: 90Sr/137Cs, 239,240Pu, and 241Am 682
25.5 Summary 686
References 687
Part V Fractionation of Stable Isotopes 691
26 Hydrogen and Oxygen 693
26.1 Atomic Properties 693
26.2 Mathematical Relations 695
26.3 Meteoric Precipitation 697
26.4 Paleothermometry (Carbonates) 704
26.5 Silicate Minerals and Rocks 709
26.6 Water–Rock Interactions (Rocks) 714
26.7 Water–Rock Interactions (Water) 718
26.8 Clay Minerals 725
26.9 Marine Carbonates 727
26.10 Marine Phosphates 730
26.11 Biogenic Silica and Hydroxides of Fe and Al 735
26.12 Chert (Phanerozoic and Precambrian) 736
26.13 Extraterrestrial Rocks 738
26.14 Summary 743
References 744
27 Carbon 753
27.1 Biosphere 754
27.2 Life in the Precambrian Oceans 757
27.3 Fossil Fuel 761
27.4 Carbon-Isotope Stratigraphy (Phanerozoic) 763
27.5 Precambrian Carbonates 768
27.6 Igneous and Metamorphic Rocks 774
27.7 Extraterrestrial Carbon 785
27.8 Search for Life on Mars 790
27.9 Summary 792
References 793
28 Nitrogen 803
28.1 Geochemistry 803
28.2 Isotope Fractionation 805
28.3 Nitrogen on the Surface of the Earth 806
28.4 Fossil Fuels 808
28.5 Igneous Rocks and the Mantle 811
28.6 Ultramafic Xenoliths 812
28.7 Diamonds 813
28.8 Meteorites 815
28.9 Moon 817
28.10 Mars 818
28.11 Summary 820
References 820
29 Sulfur 824
29.1 Isotope Geochemistry 824
29.2 Biogenic Isotope Fractionation 825
29.3 Sulfur in Recent Sediment 827
29.4 Fossil Fuels 828
29.5 Native Sulfur Deposits 830
29.6 Sedimentary Rocks of Precambrian Age 831
29.7 Isotopic Evolution of Marine Sulfate 833
29.8 Igneous Rocks 835
29.9 Sulfide Ore Deposits 840
29.10 Sulfur in the Environment 843
29.11 Mass-Independent Isotope Fractionation 846
29.12 Summary 847
References 849
30 Boron and Other Elements 854
30.1 Boron 855
30.2 Lithium 859
30.3 Silicon 863
30.4 Chlorine 868
30.5 Postscript 870
References 870
Index 875
International Geological Timescale (2002) 897