An Introduction to Support Vector Machines and Other Kernel-based Learning Methods
This is the first comprehensive introduction to Support Vector Machines (SVMs), a new generation learning system based on recent advances in statistical learning theory. Students will find the book both stimulating and accessible, while practitioners will be guided smoothly through the material required for a good grasp of the theory and its applications. The concepts are introduced gradually in accessible and self-contained stages, while the presentation is rigorous and thorough. Pointers to relevant literature and web sites containing software make it an ideal starting point for further study.
1100491978
An Introduction to Support Vector Machines and Other Kernel-based Learning Methods
This is the first comprehensive introduction to Support Vector Machines (SVMs), a new generation learning system based on recent advances in statistical learning theory. Students will find the book both stimulating and accessible, while practitioners will be guided smoothly through the material required for a good grasp of the theory and its applications. The concepts are introduced gradually in accessible and self-contained stages, while the presentation is rigorous and thorough. Pointers to relevant literature and web sites containing software make it an ideal starting point for further study.
111.0 In Stock
An Introduction to Support Vector Machines and Other Kernel-based Learning Methods

An Introduction to Support Vector Machines and Other Kernel-based Learning Methods

An Introduction to Support Vector Machines and Other Kernel-based Learning Methods

An Introduction to Support Vector Machines and Other Kernel-based Learning Methods

Hardcover(New Edition)

$111.00 
  • SHIP THIS ITEM
    In stock. Ships in 1-2 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

This is the first comprehensive introduction to Support Vector Machines (SVMs), a new generation learning system based on recent advances in statistical learning theory. Students will find the book both stimulating and accessible, while practitioners will be guided smoothly through the material required for a good grasp of the theory and its applications. The concepts are introduced gradually in accessible and self-contained stages, while the presentation is rigorous and thorough. Pointers to relevant literature and web sites containing software make it an ideal starting point for further study.

Product Details

ISBN-13: 9780521780193
Publisher: Cambridge University Press
Publication date: 03/23/2000
Edition description: New Edition
Pages: 204
Product dimensions: 6.89(w) x 9.80(h) x 0.59(d)

Table of Contents

Preface; 1. The learning methodology; 2. Linear learning machines; 3. Kernel-induced feature spaces; 4. Generalisation theory; 5. Optimisation theory; 6. Support vector machines; 7. Implementation techniques; 8. Applications of support vector machines; Appendix A: pseudocode for the SMO algorithm; Appendix B: background mathematics; Appendix C: glossary; Appendix D: notation; Bibliography; Index.
From the B&N Reads Blog

Customer Reviews