Central Simple Algebras and Galois Cohomology
The first comprehensive, modern introduction to the theory of central simple algebras over arbitrary fields, this book starts from the basics and reaches such advanced results as the Merkurjev–Suslin theorem, a culmination of work initiated by Brauer, Noether, Hasse and Albert, and the starting point of current research in motivic cohomology theory by Voevodsky, Suslin, Rost and others. Assuming only a solid background in algebra, the text covers the basic theory of central simple algebras, methods of Galois descent and Galois cohomology, Severi–Brauer varieties, and techniques in Milnor K-theory and K-cohomology, leading to a full proof of the Merkurjev–Suslin theorem and its application to the characterization of reduced norms. The final chapter rounds off the theory by presenting the results in positive characteristic, including the theorems of Bloch–Gabber–Kato and Izhboldin. This second edition has been carefully revised and updated, and contains important additional topics.
1100955115
Central Simple Algebras and Galois Cohomology
The first comprehensive, modern introduction to the theory of central simple algebras over arbitrary fields, this book starts from the basics and reaches such advanced results as the Merkurjev–Suslin theorem, a culmination of work initiated by Brauer, Noether, Hasse and Albert, and the starting point of current research in motivic cohomology theory by Voevodsky, Suslin, Rost and others. Assuming only a solid background in algebra, the text covers the basic theory of central simple algebras, methods of Galois descent and Galois cohomology, Severi–Brauer varieties, and techniques in Milnor K-theory and K-cohomology, leading to a full proof of the Merkurjev–Suslin theorem and its application to the characterization of reduced norms. The final chapter rounds off the theory by presenting the results in positive characteristic, including the theorems of Bloch–Gabber–Kato and Izhboldin. This second edition has been carefully revised and updated, and contains important additional topics.
99.99 In Stock
Central Simple Algebras and Galois Cohomology

Central Simple Algebras and Galois Cohomology

Central Simple Algebras and Galois Cohomology

Central Simple Algebras and Galois Cohomology

Hardcover

$99.99 
  • SHIP THIS ITEM
    In stock. Ships in 1-2 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

The first comprehensive, modern introduction to the theory of central simple algebras over arbitrary fields, this book starts from the basics and reaches such advanced results as the Merkurjev–Suslin theorem, a culmination of work initiated by Brauer, Noether, Hasse and Albert, and the starting point of current research in motivic cohomology theory by Voevodsky, Suslin, Rost and others. Assuming only a solid background in algebra, the text covers the basic theory of central simple algebras, methods of Galois descent and Galois cohomology, Severi–Brauer varieties, and techniques in Milnor K-theory and K-cohomology, leading to a full proof of the Merkurjev–Suslin theorem and its application to the characterization of reduced norms. The final chapter rounds off the theory by presenting the results in positive characteristic, including the theorems of Bloch–Gabber–Kato and Izhboldin. This second edition has been carefully revised and updated, and contains important additional topics.

Product Details

ISBN-13: 9780521861038
Publisher: Cambridge University Press
Publication date: 08/10/2006
Series: Cambridge Studies in Advanced Mathematics , #101
Pages: 356
Product dimensions: 6.22(w) x 9.29(h) x 0.87(d)

About the Author

Philippe Gille is a Research Director for Centre National de la Recherche Scientifique at Institut Camille Jordan, Lyon. He has written numerous research papers on linear algebraic groups and related structures.

Tamás Szamuely is a Research Advisor at the Alfréd Rényi Institute of Mathematics of the Hungarian Academy of Sciences, Budapest and a Professor at the Central European University, Hungary. He is the author of Galois Groups and Fundamental Groups (Cambridge, 2009), also published in the Cambridge Studies in Advanced Mathematics series, as well as numerous research papers.

Table of Contents

1. Quaternion algebras; 2. Central simple algebras and Galois descent; 3. Techniques from group cohomology; 4. The cohomological Brauer group; 5. Severi–Brauer varieties; 6. Residue maps; 7. Milnor K-theory; 8. The Merkurjev–Suslin theorem; 9. Symbols in positive characteristic; Appendix. A breviary of algebraic geometry; Bibliography; Index.
From the B&N Reads Blog

Customer Reviews