Explanation in Causal Inference: Methods for Mediation and Interaction
The book provides an accessible but comprehensive overview of methods for mediation and interaction. There has been considerable and rapid methodological development on mediation and moderation/interaction analysis within the causal-inference literature over the last ten years. Much of this material appears in a variety of specialized journals, and some of the papers are quite technical. There has also been considerable interest in these developments from empirical researchers in the social and biomedical sciences. However, much of the material is not currently in a format that is accessible to them. The book closes these gaps by providing an accessible, comprehensive, book-length coverage of mediation.

The book begins with a comprehensive introduction to mediation analysis, including chapters on concepts for mediation, regression-based methods, sensitivity analysis, time-to-event outcomes, methods for multiple mediators, methods for time-varying mediation and longitudinal data, and relations between mediation and other concepts involving intermediates such as surrogates, principal stratification, instrumental variables, and Mendelian randomization. The second part of the book concerns interaction or "moderation," including concepts for interaction, statistical interaction, confounding and interaction, mechanistic interaction, bias analysis for interaction, interaction in genetic studies, and power and sample-size calculation for interaction. The final part of the book provides comprehensive discussion about the relationships between mediation and interaction and unites these concepts within a single framework. This final part also provides an introduction to spillover effects or social interaction, concluding with a discussion of social-network analyses.

The book is written to be accessible to anyone with a basic knowledge of statistics. Comprehensive appendices provide more technical details for the interested reader. Applied empirical examples from a variety of fields are given throughout. Software implementation in SAS, Stata, SPSS, and R is provided. The book should be accessible to students and researchers who have completed a first-year graduate sequence in quantitative methods in one of the social- or biomedical-sciences disciplines. The book will only presuppose familiarity with linear and logistic regression, and could potentially be used as an advanced undergraduate book as well.
1120346728
Explanation in Causal Inference: Methods for Mediation and Interaction
The book provides an accessible but comprehensive overview of methods for mediation and interaction. There has been considerable and rapid methodological development on mediation and moderation/interaction analysis within the causal-inference literature over the last ten years. Much of this material appears in a variety of specialized journals, and some of the papers are quite technical. There has also been considerable interest in these developments from empirical researchers in the social and biomedical sciences. However, much of the material is not currently in a format that is accessible to them. The book closes these gaps by providing an accessible, comprehensive, book-length coverage of mediation.

The book begins with a comprehensive introduction to mediation analysis, including chapters on concepts for mediation, regression-based methods, sensitivity analysis, time-to-event outcomes, methods for multiple mediators, methods for time-varying mediation and longitudinal data, and relations between mediation and other concepts involving intermediates such as surrogates, principal stratification, instrumental variables, and Mendelian randomization. The second part of the book concerns interaction or "moderation," including concepts for interaction, statistical interaction, confounding and interaction, mechanistic interaction, bias analysis for interaction, interaction in genetic studies, and power and sample-size calculation for interaction. The final part of the book provides comprehensive discussion about the relationships between mediation and interaction and unites these concepts within a single framework. This final part also provides an introduction to spillover effects or social interaction, concluding with a discussion of social-network analyses.

The book is written to be accessible to anyone with a basic knowledge of statistics. Comprehensive appendices provide more technical details for the interested reader. Applied empirical examples from a variety of fields are given throughout. Software implementation in SAS, Stata, SPSS, and R is provided. The book should be accessible to students and researchers who have completed a first-year graduate sequence in quantitative methods in one of the social- or biomedical-sciences disciplines. The book will only presuppose familiarity with linear and logistic regression, and could potentially be used as an advanced undergraduate book as well.
165.0 In Stock
Explanation in Causal Inference: Methods for Mediation and Interaction

Explanation in Causal Inference: Methods for Mediation and Interaction

by Tyler VanderWeele
Explanation in Causal Inference: Methods for Mediation and Interaction

Explanation in Causal Inference: Methods for Mediation and Interaction

by Tyler VanderWeele

Hardcover(New Edition)

$165.00 
  • SHIP THIS ITEM
    In stock. Ships in 3-7 days. Typically arrives in 3 weeks.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

The book provides an accessible but comprehensive overview of methods for mediation and interaction. There has been considerable and rapid methodological development on mediation and moderation/interaction analysis within the causal-inference literature over the last ten years. Much of this material appears in a variety of specialized journals, and some of the papers are quite technical. There has also been considerable interest in these developments from empirical researchers in the social and biomedical sciences. However, much of the material is not currently in a format that is accessible to them. The book closes these gaps by providing an accessible, comprehensive, book-length coverage of mediation.

The book begins with a comprehensive introduction to mediation analysis, including chapters on concepts for mediation, regression-based methods, sensitivity analysis, time-to-event outcomes, methods for multiple mediators, methods for time-varying mediation and longitudinal data, and relations between mediation and other concepts involving intermediates such as surrogates, principal stratification, instrumental variables, and Mendelian randomization. The second part of the book concerns interaction or "moderation," including concepts for interaction, statistical interaction, confounding and interaction, mechanistic interaction, bias analysis for interaction, interaction in genetic studies, and power and sample-size calculation for interaction. The final part of the book provides comprehensive discussion about the relationships between mediation and interaction and unites these concepts within a single framework. This final part also provides an introduction to spillover effects or social interaction, concluding with a discussion of social-network analyses.

The book is written to be accessible to anyone with a basic knowledge of statistics. Comprehensive appendices provide more technical details for the interested reader. Applied empirical examples from a variety of fields are given throughout. Software implementation in SAS, Stata, SPSS, and R is provided. The book should be accessible to students and researchers who have completed a first-year graduate sequence in quantitative methods in one of the social- or biomedical-sciences disciplines. The book will only presuppose familiarity with linear and logistic regression, and could potentially be used as an advanced undergraduate book as well.

Product Details

ISBN-13: 9780199325870
Publisher: Oxford University Press
Publication date: 03/13/2015
Edition description: New Edition
Pages: 728
Product dimensions: 6.50(w) x 9.30(h) x 1.60(d)

About the Author

Tyler J. VanderWeele, Ph.D., is a methodologist at Harvard University. He holds degrees in biostatistics, mathematics, finance, philosophy and theology and is currently Professor of Epidemiology in the Departments of Epidemiology and Biostatistics at the Harvard School of Public Health and a faculty affiliate of the Institute of Quantitative Social Science at Harvard University. His empirical research has been in epidemiology, various fields within the social sciences, and the study of religion and health.

Table of Contents

PART I: MEDIATION ANALYSIS
Chapter 1. Explanation and Mechanism

Chapter 2. Mediation: Introduction and Regression-Based Approaches

Chapter 3. Sensitivity Analysis for Mediation

Chapter 4. Mediation Analysis with Survival Data

Chapter 5. Multiple Mediators

Chapter 6. Mediation Analysis with Time-Varying Exposures and Mediators

Chapter 7. Selected Topics in Mediation Analysis

Chapter 8. Other Topics Related to Intermediates


PART II: INTERACTION ANALYSIS
Chapter 9. An Introduction to Interaction Analysis

Chapter 10. Mechanistic Interaction

Chapter 11. Bias Analysis for Interactions

Chapter 12. Interaction in Genetics: Independence and Boosting Power

Chapter 13. Power and Sample-Size Calculations for Interaction Analysis


PART III: SYNTHESIS AND SPILLOVER EFFECTS
Chapter 14. A Unification of Mediation and Interaction

Chapter 15. Social Interactions and Spillover Effects

Chapter 16. Mediation and Interaction: Future and Context

Appendix. Technical Details and Proofs
References
From the B&N Reads Blog

Customer Reviews