Introduction to the Theory of Computation
Gain a clear understanding of even the most complex, highly theoretical computational theory topics in the approachable presentation found only in the market-leading INTRODUCTION TO THE THEORY OF COMPUTATION, 3E. The number one choice for today's computational theory course, this revision continues the book's well-know, approachable style with timely revisions, additional practice, and more memorable examples in key areas. A new first-of-its-kind theoretical treatment of deterministic context-free languages is ideal for a better understanding of parsing and LR(k) grammars. You gain a solid understanding of the fundamental mathematical properties of computer hardware, software, and applications with a blend of practical and philosophical coverage and mathematical treatments, including advanced theorems and proofs. INTRODUCTION TO THE THEORY OF COMPUTATION, 3E's comprehensive coverage makes this a valuable reference for your continued studies in theoretical computing.
1100965175
Introduction to the Theory of Computation
Gain a clear understanding of even the most complex, highly theoretical computational theory topics in the approachable presentation found only in the market-leading INTRODUCTION TO THE THEORY OF COMPUTATION, 3E. The number one choice for today's computational theory course, this revision continues the book's well-know, approachable style with timely revisions, additional practice, and more memorable examples in key areas. A new first-of-its-kind theoretical treatment of deterministic context-free languages is ideal for a better understanding of parsing and LR(k) grammars. You gain a solid understanding of the fundamental mathematical properties of computer hardware, software, and applications with a blend of practical and philosophical coverage and mathematical treatments, including advanced theorems and proofs. INTRODUCTION TO THE THEORY OF COMPUTATION, 3E's comprehensive coverage makes this a valuable reference for your continued studies in theoretical computing.
314.95 In Stock
Introduction to the Theory of Computation

Introduction to the Theory of Computation

by Michael Sipser
Introduction to the Theory of Computation

Introduction to the Theory of Computation

by Michael Sipser

Hardcover(New Edition)

$314.95 
  • SHIP THIS ITEM
    In stock. Ships in 1-2 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

Gain a clear understanding of even the most complex, highly theoretical computational theory topics in the approachable presentation found only in the market-leading INTRODUCTION TO THE THEORY OF COMPUTATION, 3E. The number one choice for today's computational theory course, this revision continues the book's well-know, approachable style with timely revisions, additional practice, and more memorable examples in key areas. A new first-of-its-kind theoretical treatment of deterministic context-free languages is ideal for a better understanding of parsing and LR(k) grammars. You gain a solid understanding of the fundamental mathematical properties of computer hardware, software, and applications with a blend of practical and philosophical coverage and mathematical treatments, including advanced theorems and proofs. INTRODUCTION TO THE THEORY OF COMPUTATION, 3E's comprehensive coverage makes this a valuable reference for your continued studies in theoretical computing.

Product Details

ISBN-13: 9781133187790
Publisher: Cengage Learning
Publication date: 06/27/2012
Edition description: New Edition
Pages: 504
Product dimensions: 6.50(w) x 9.20(h) x 0.90(d)

About the Author

Michael Sipser has taught theoretical computer science and mathematics at the Massachusetts Institute of Technology for the past 32 years. He is a Professor of Applied Mathematics, a member of the Computer Science and Artificial Intelligence Laboratory (CSAIL), and the current head of the mathematics department. He enjoys teaching and pondering the many mysteries of complexity theory.

Table of Contents

Introduction. PART 1: AUTOMATA AND LANGUAGES. 1. Regular Languages. 2. Context-Free Languages. PART 2: COMPUTABILITY THEORY. 3. The Church-Turing Thesis. 4. Decidability. 5. Reducibility. 6. Advanced Topics in Computability Theory. PART 3: COMPLEXITY THEORY. 7. Time Complexity. 8. Space Complexity. 9. Intractability. 10. Advanced Topics in Complexity Theory. Selected Bibliography.
From the B&N Reads Blog

Customer Reviews