After presenting several useful strategies and algorithms for DF and tracking performance, the book evaluates DF algorithms, software, and systems. It next covers fuzzy logic, fuzzy sets and their properties, fuzzy logic operators, fuzzy propositions/rule-based systems, an inference engine, and defuzzification methods. It develops a new MATLAB graphical user interface for evaluating fuzzy implication functions, before using fuzzy logic to estimate the unknown states of a dynamic system by processing sensor data. The book then employs principal component analysis, spatial frequency, and wavelet-based image fusion algorithms for the fusion of image data from sensors. It also presents procedures for combing tracks obtained from imaging sensor and ground-based radar. The final chapters discuss how DF is applied to mobile intelligent autonomous systems and intelligent monitoring systems.
Fusing sensors’ data can lead to numerous benefits in a system’s performance. Through real-world examples and the evaluation of algorithmic results, this detailed book provides an understanding of MSDF concepts and methods from a practical point of view.
Select MATLAB programs are available for download on www.crcpress.com
After presenting several useful strategies and algorithms for DF and tracking performance, the book evaluates DF algorithms, software, and systems. It next covers fuzzy logic, fuzzy sets and their properties, fuzzy logic operators, fuzzy propositions/rule-based systems, an inference engine, and defuzzification methods. It develops a new MATLAB graphical user interface for evaluating fuzzy implication functions, before using fuzzy logic to estimate the unknown states of a dynamic system by processing sensor data. The book then employs principal component analysis, spatial frequency, and wavelet-based image fusion algorithms for the fusion of image data from sensors. It also presents procedures for combing tracks obtained from imaging sensor and ground-based radar. The final chapters discuss how DF is applied to mobile intelligent autonomous systems and intelligent monitoring systems.
Fusing sensors’ data can lead to numerous benefits in a system’s performance. Through real-world examples and the evaluation of algorithmic results, this detailed book provides an understanding of MSDF concepts and methods from a practical point of view.
Select MATLAB programs are available for download on www.crcpress.com

Multi-Sensor Data Fusion with MATLAB®
568
Multi-Sensor Data Fusion with MATLAB®
568Hardcover(New Edition)
Product Details
ISBN-13: | 9781439800034 |
---|---|
Publisher: | Taylor & Francis |
Publication date: | 12/16/2009 |
Edition description: | New Edition |
Pages: | 568 |
Product dimensions: | 6.20(w) x 9.20(h) x 1.20(d) |