Digital Signal Processing using MATLAB / Edition 3

Digital Signal Processing using MATLAB / Edition 3

ISBN-10:
1305635191
ISBN-13:
9781305635197
Pub. Date:
01/01/2016
Publisher:
CL Engineering
ISBN-10:
1305635191
ISBN-13:
9781305635197
Pub. Date:
01/01/2016
Publisher:
CL Engineering
Digital Signal Processing using MATLAB / Edition 3

Digital Signal Processing using MATLAB / Edition 3

Hardcover

$246.95 Current price is , Original price is $246.95. You
$189.63 
  • SHIP THIS ITEM
    Not Eligible for Free Shipping
  • PICK UP IN STORE
    Check Availability at Nearby Stores
  • SHIP THIS ITEM

    Temporarily Out of Stock Online

    Please check back later for updated availability.


Overview

Focus on the development, implementation, and application of modern DSP techniques with DIGITAL SIGNAL PROCESSING USING MATLAB, 3E. Written in an engaging, informal style, this edition immediately captures your attention and encourages you to explore each critical topic. Every chapter starts with a motivational section that highlights practical examples and challenges that you can solve using techniques covered in the chapter. Each chapter concludes with a detailed case study example, a chapter summary with learning outcomes, and practical homework problems cross-referenced to specific chapter sections for your convenience. DSP Companion software accompanies each book to enable further investigation. The DSP Companion software operates with MATLAB and provides intriguing demonstrations as well as interactive explorations of analysis and design concepts.

Product Details

ISBN-13: 9781305635197
Publisher: CL Engineering
Publication date: 01/01/2016
Series: Activate Learning with these NEW titles from Engineering!
Edition description: New Edition
Pages: 800
Product dimensions: 8.20(w) x 10.10(h) x 1.40(d)

About the Author

Robert J. Schilling is Professor Emeritus of Electrical and Computer Engineering at Clarkson University. Dr. Schilling s teaching interests include digital signal processing, control systems, robotics, nonlinear systems, computer graphics, and C++ and MATLAB programming. His research interests encompass adaptive signal processing, nonlinear system identification, active noise control, and control of robotic manipulators.


Bio: Sandra L. Harris is Associate Professor Emeritus of Chemical Engineering at Clarkson University. Dr. Harris s teaching interests include process control, thermodynamics, and biochemical engineering. Her research interests center around periodic processing, control of systems having varying dead times, and the generation of input signals for efficient process identification.

Table of Contents

PART I: SIGNAL AND SYSTEM ANALYSIS. 1. Signal Processing. Motivation. Digital and Analog Processing. Total Harmonic Distortion (THD). A Notch Filter. Active Noise Control. Video Aliasing. Signals and Systems. Signal Classification. System Classification. Sampling of Continuous-time Signals. Sampling as Modulation. Aliasing. Reconstruction of Continuous-time Signals. Reconstruction Formula. Zero-order Hold. Delayed First-order Hold. Prefilters and Postfilters. Anti-aliasing Filter. Anti-imaging Filter. DAC and ADC Circuits. Digital-to-analog Conversion (DAC). Analog-to-digital Conversion (ADC). DSP Companion. Installation. Menu Options. GUI Modules. Functions. GUI Modules and Case Studies. Chapter Summary. Problems. Analysis. GUI Simulation. MATLAB Computation. 2. Discrete-Time Systems in the Time Domain. Motivation. Home Mortgage. Range Measurement with Radar. Discrete-time Signals. Signal Classification. Common Signals. Discrete-time Systems. Difference Equations. Zero-input response. Zero-state response. Block Diagrams. The Impulse Response. FIR Systems. IIR Systems. Convolution. Linear Convolution. Circular Convolution. Zero Padding. Deconvolution. Polynomial Arithmetic. Correlation. Linear Cross-correlation. Circular Cross-correlation. Stability in the Time Domain. GUI Modules and Case Studies. Chapter Summary. Problems. Analysis. GUI Simulation. MATLAB Computation. 3. Discrete-time Systems in the Frequency Domain. Motivation. Satellite Attitude Control. Modeling the Vocal Tract. Z-transform Pairs. Region of Convergence. Common Z-transform Pairs. Z-transform Properties. General Properties. Causal Properties. Inverse Z-transform. Noncausal Signals. Synthetic Division. Partial Fractions. Residue Method. Transfer Functions. The Transfer Function. Zero-state Response. Poles, Zeros, and Modes. DC Gain. Signal Flow Graphs. Stability in the Frequency Domain. Input-output Representation. BIBO Stability. The Jury Test. Frequency Response. Frequency Response. Sinusoidal Inputs. Periodic Inputs. System Identification. Least-squares Fit. Persistently Exciting Inputs. GUI Modules and Case Studies. Chapter Summary. Problems. Analysis. GUI Simulation. MATLAB Computation. 4. Fourier Transforms and Spectral Analysis. Motivation. Fourier Series. DC Wall Transformer. Frequency Response. Discrete-time Fourier Transform (DTFT). DTFT. Properties of the DTFT. The Discrete Fourier Transform (DFT). DFT. Matrix Formulation. Fourier Series and Discrete Spectra. DFT Properties. Fast Fourier Transform (FFT). Decimation in Time FFT. FFT Computational Effort. Alternative FFT Implementations. Fast Convolution and Correlation. Fast Convolution. Fast Block Convolution. Fast Correlation. White Noise. Uniform White Noise. Gaussian White Noise. Auto-correlation. Auto-correlation of White Noise. Power Density Spectrum. Extracting Periodic Signals from Noise. Zero Padding and Spectral Resolution. Frequency Response using the DFT. Zero Padding. Spectral Resolution. The Spectrogram. Data Windows. Spectrogram. Power Density Spectrum Estimation. Bartlett's Method. Welch's Method. GUI Modules and Case Studies. Chapter Summary. Problems. Analysis. GUI Simulation. MATLAB Computation. Part II: Filter Design. 5. Filter Types and Characteristics. Motivation. Filter Design Specifications. Filter Realization Structures. Frequency-selective Filters. Linear Design Specifications. Logarithmic Design Specifications (dB). Linear-phase Filters. Group Delay. Amplitude Response. Linear-phase Zeros. Zero-phase Filters. Minimum-phase and Allpass Filters. Minimum-phase Filters. Allpass Filters. Inverse Systems and Equalization. Quadrature Filters. Differentiator. Hilbert Transformer. Digital Oscillator. Notch Filters and Resonators. Notch Filters. Resonators. Narrowband Filters and Filter Banks. Narrowband Filters. Filter Banks. Adaptive Filters. Transversal Filters. Pseudo-filters. GUI Modules and Case Studies. Chapter Summary. Problems. Analysis. GUI Simulation. MATLAB Computation. 6. FIR Filter Design. Motivation. Numerical Differentiation. Signal-to-noise Ratio. Windowing Method. Truncated Impulse Response. Windowing. Frequency-sampling Method. Frequency Sampling. Transition-band Optimization. Least-squares Method. Equiripple Filter Design. Minimax Error Criterion. Parks-McClellan Algorithm. Differentiators and Hilbert Transformers. Differentiator Design. Hilbert Transformer Design. Quadrature Filter Design. Generation of a Quadrature Pair. Quadrature Filter Design. Equalizer Design. Filter Realization Structures. Direct Forms. Cascade Form. Lattice Form. Finite Word Length Effects. Binary Number Representation. Input Quantization Error. Coefficient Quantization Error. Roundoff Error, Overflow, and Scaling. GUI Modules and Cases Studies. Chapter Summary. Problems. Analysis. GUI Simulation. MATLAB Computation. 7. IIR Filter Design. Motivation. Tunable Plucked-string Filter. Colored Noise. Filter Design by Pole-zero Placement. Resonator. Notch Filter. Comb Filters. Filter Design Parameters. Classical Analog Filters. Butterworth Filters. Chebyshev-I Filters. Chebyshev-II Filters. Elliptic Filters. Bilinear Transformation Method. Frequency Transformations. Analog Frequency Transformations. Digital Frequency Transformations. Filter Realization Structures. Direct Forms. Parallel Form. Cascade Form. Finite Word Length Effects. Coefficient Quantization Error. Roundoff Error, Overflow, and Scaling. Limit Cycles. GUI Modules and Case Studies. Chapter Summary. Problems. Analysis. GUI Simulation. MATLAB Computation. Part III: Advanced Signal Processing. 8. Multirate Signal Processing. Motivation. Narrowband. Intersample Delay Systems. Integer Sampling Rate Converters. Sampling Rate Decimator. Sampling Rate Interpolator. Rational Sampling Rate Converters. Single-stage Converters. Multistage Converters. Polyphase Filters. Polyphase Decimator. Polyphase Interpolator. Narrowband Filters. Filter Banks. Analysis and Synthesis Banks. Subfilter Design. Polyphase Representation. Perfect Reconstruction Filter Banks. Time-division multiplexing. Perfect Reconstruction. Transmultiplexors. Oversampled A-to-D Converters. Anti-aliasing Filters. Sigma-Delta ADCs. Oversampled DACs. Anti-imaging Filters. Passband Equalization. GUI Modules and Case Studies. Chapter Summary. Problems. Analysis. GUI Simulation. MATLAB Computation. 9. Adaptive Signal Processing. Motivation. System Identification. Channel Equalization. Signal Prediction. Noise Cancellation. Mean Square Error. Adaptive Transversal Filters. Cross-correlation Revisited. Mean Square Error. Least Mean Square (LMS) Method. Performance Analysis of the LMS Method. Step Size. Convergence Rate. Excess Mean Square Error. Modified LMS Methods. Normalized LMS Method. Correlation LMS Method. Leaky LMS Method. Adaptive Filter Design with Pseudo-filters. Pseudo-filters. Adaptive Filter Design. Linear-phase Adaptive Filters. Recursive Least Squares (RLS) Method. Performance Criterion. Recursive Formulation. Active Noise Control. The Filtered-x LMS Method. Secondary Path Identification. Signal-synthesis Method. Adaptive Function Approximation. Nonlinear Functions. Radial basis Functions (RBF). Raised-cosine RBF Networks. Nonlinear System Identification (NLMS). GUI Modules and Case Studies. Chapter Summary. Problems. Analysis. GUI Simulation. MATLAB Computation. References and Further Reading. Appendices. 1. Transform Tables. Fourier Series. Fourier Transform. Laplace Transform. Z-transform. Discrete-time Fourier Transform (DTFT). Discrete Fourier Transform. 2. Mathematical Identities. Complex Numbers. Euler's Identity. Trigonometric Identities. Inequalities. Uniform White Noise. Index.
From the B&N Reads Blog

Customer Reviews