The Art of Invention: The Creative Process of Discovery and Design
In this entertaining and insightful exploration of the process of invention, an experienced inventor vividly illustrates how great inventions embody three crucial characteristics—simplicity, elegance, and robustness. Whether you're an aspiring inventor or an experienced designer, the author's expertise, personal examples, and case studies offer detailed guidance on conceptualizing your ideas and turning them into reality. The author shows how ideas can come from a variety of sources such as the natural world, basic physical principles, life experience, or even chance observations. He examines how intuition and the harnessing of subconscious information are key ingredients for the inventive process. He concludes with an in-depth look at the business of invention and the typical inventor's toolkit. He addresses the real-world challenges of turning a good idea into a practical, marketable application, including patents, marketing, and entrepreneurship. He is candid about the realities of hard work and the need to learn from the inevitable mistakes along the way. Full of insights and practical guidance from a successful inventor and entrepreneur, this book will open new avenues of creativity for budding and accomplished inventors alike.
1102229018
The Art of Invention: The Creative Process of Discovery and Design
In this entertaining and insightful exploration of the process of invention, an experienced inventor vividly illustrates how great inventions embody three crucial characteristics—simplicity, elegance, and robustness. Whether you're an aspiring inventor or an experienced designer, the author's expertise, personal examples, and case studies offer detailed guidance on conceptualizing your ideas and turning them into reality. The author shows how ideas can come from a variety of sources such as the natural world, basic physical principles, life experience, or even chance observations. He examines how intuition and the harnessing of subconscious information are key ingredients for the inventive process. He concludes with an in-depth look at the business of invention and the typical inventor's toolkit. He addresses the real-world challenges of turning a good idea into a practical, marketable application, including patents, marketing, and entrepreneurship. He is candid about the realities of hard work and the need to learn from the inevitable mistakes along the way. Full of insights and practical guidance from a successful inventor and entrepreneur, this book will open new avenues of creativity for budding and accomplished inventors alike.
20.0 In Stock
The Art of Invention: The Creative Process of Discovery and Design

The Art of Invention: The Creative Process of Discovery and Design

by Steven J. Paley
The Art of Invention: The Creative Process of Discovery and Design

The Art of Invention: The Creative Process of Discovery and Design

by Steven J. Paley

Paperback

$20.00 
  • SHIP THIS ITEM
    Qualifies for Free Shipping
  • PICK UP IN STORE
    Check Availability at Nearby Stores

Related collections and offers


Overview

In this entertaining and insightful exploration of the process of invention, an experienced inventor vividly illustrates how great inventions embody three crucial characteristics—simplicity, elegance, and robustness. Whether you're an aspiring inventor or an experienced designer, the author's expertise, personal examples, and case studies offer detailed guidance on conceptualizing your ideas and turning them into reality. The author shows how ideas can come from a variety of sources such as the natural world, basic physical principles, life experience, or even chance observations. He examines how intuition and the harnessing of subconscious information are key ingredients for the inventive process. He concludes with an in-depth look at the business of invention and the typical inventor's toolkit. He addresses the real-world challenges of turning a good idea into a practical, marketable application, including patents, marketing, and entrepreneurship. He is candid about the realities of hard work and the need to learn from the inevitable mistakes along the way. Full of insights and practical guidance from a successful inventor and entrepreneur, this book will open new avenues of creativity for budding and accomplished inventors alike.

Product Details

ISBN-13: 9781616142230
Publisher: Rowman & Littlefield Publishers, Inc.
Publication date: 11/01/2010
Pages: 236
Product dimensions: 9.16(w) x 11.70(h) x 0.54(d)

About the Author

Steven J. Paley (Paramus, NJ) holds nine US patents and numerous international patents. He is the founder of Arise Technologies, Inc., which teaches robotics and engineering to special needs and gifted children. From 1985 to 2001, he was the CEO and Chief Technical Officer of the Texwipe Company, which manufactured and sold specialized consumable products for the control of microcontamination in semiconductor fabrication, disk drive manufacture, biotechnology, and aerospace.

Read an Excerpt

the ART of INVENTION

THE CREATIVE PROCESS OF DISCOVERY AND DESIGN
By STEVEN J. PALEY

Prometheus Books

Copyright © 2010 Steven J. Paley
All right reserved.

ISBN: 978-1-61614-223-0


Chapter One

THE PAPER CLIP ADD THE PROBLEM

What does it take to invent? How do you invent something—create something that didn't exist before you brought it into the world? How do people come up with great ideas?

What Makes a Great Idea Great?

Let's start by looking at an example of a great idea—the paper clip. What makes the paper clip such a great invention? First, it solves a significant and obvious problem: temporarily holding sheets of paper together without deforming them in any way. Before the advent of computers and electronic communication, paper was, and arguably still is, the primary means of written communication. A simple way to hold together sheaves of paper was a significant need for anyone who dealt in written documents. The fact that this method—unlike stapling, pinning, or binding—was temporary provided another valuable feature in that papers could be easily reordered, added, or removed from the bound stack. While all this is nice, it still doesn't explain what is so intriguing about the simple paper clip.

Let's look at the paper clip in terms of what it can do. My first assignment in engineering school was to find fifty uses for a paper clip outside its intended use. This was not very difficult. Some of the more creative uses I have seen include a device to pick locks, a linkage to fix a broken automobile transmission, and a heated knife to sculpt foam. This simple invention provides the germ of many more inventions. That we can do so many things with something so simple begins to show why the paper clip is such a great invention.

Is it hard to make? Is it costly? The paper clip is simple in design, materials, and manufacture. It is merely a piece of extruded metal wire with three bends. And yet it can be used to do so many things.

Let's look at some of the characteristics of the paper clip as an invention.

1. Simplicity. The paper clip is an extremely simple solution to the problem of temporarily holding sheaves of papers together. 2. Adaptability. The paper clip's simplicity gives it flexibility in use that can be adapted to variation. Whether you want to bind two sheets of paper or twenty, the paper clip can be bent to accommodate the need. 3. Ease of use. The paper clip is easy and intuitive to use. No instruction manual is needed. It is obvious what to do with it. Its obviousness comes from its multisensory appeal. One can figure out how to use it by sight or by feel. 4. Robustness. The paper clip always works. Its simplicity ensures that failure will be rare. A user can determine immediately by sight whether a particular clip is likely to fail. 5. Unintended functionality. The fifty other things to do with a paper clip are an added bonus. Simplicity often leads to universality. The paper clip is merely a bent piece of wire, and there are many things that can be done with a piece of wire. Perhaps this is the genius of the design: that we can do so much with so little is what makes this an exceptional invention. 6. Elegance. Elegance is a combination of the above characteristics. Elegance means achieving a task by doing a lot with just a little. Elegance in design or invention means solving a problem in a very simple yet comprehensive manner.

The attributes above can be encapsulated in my personal design mantra. The goal of any design is to be simple, elegant, and robust. This applies to complex inventions and designs as well. No matter if I am designing a shoelace nib or a nuclear power plant, the simple, elegant, and robust guidelines apply. Addressing the seeming paradox of making complex things simple, Albert Einstein, a man who more than dabbled in complex things, is reputed to have famously said, "Everything should be made as simple as possible, but not simpler."

Even in developing complex theories of the workings of the universe, Einstein strove to be as simple as possible. As he also said, "Any intelligent fool can make things bigger, more complex, and more violent. It takes a touch of genius—and a lot of courage—to move in the opposite direction."

The ideas of simplicity, elegance, and robustness apply both to invention and to its close cousin, design. As we will see in the following chapters, inventions that fit these criteria are often considered the most profound and successful.

The History of the Paper Clip

Who invented the paper clip, and how did he come up with this great idea? There was not one individual who had an "aha!" moment and invented the paper clip as we know it today. The original embodiment is thought to go back to Byzantine times, when a form of the paper clip was fashioned from brass to hold together very important documents. Unlike today's paper clips, these were not inexpensive, mass-produced throwaways. The wire paper clip was first patented in 1867 by Samuel B. Fay, whose intention was to create a device that would hold tickets to fabric. However, he noted in his patent application that his clip could also be used to hold papers together. The popularity of such clips for holding papers together soon overtook Fay's original interest in clipping price tags or laundry tickets to clothing. A patent for another paper clip design was issued in 1877, and patent applications for several more designs were filed in 1896 and for several years thereafter. By the 1890s, paper clips were commonly used in business offices. The March 1900 issue of Business commented that "[t}he wire clip for holding office papers together has entirely superseded the use of the pin in all up-to-date offices."'

Several interesting things emerge from looking at the question of how Fay came up with this invention. First, the original invention was designed to solve a much narrower problem than the one it actually solved. The inventor did not recognize the potential of his invention. This is commonly the case. An inventor looks to solve one problem and inadvertently solves a much larger one. There are many examples of this in the history of invention. The inventor of chewing gum, for instance, was originally trying to develop synthetic rubber from chicle sap. Leo Baekeland, the inventor of Bakelite, the first synthetic plastic, was trying to develop an alternative to shellac for insulating electrical wires.

Second, we can see that inventions evolve. Inventors are still searching for means to improve the paper clip. They identify problems with what seems to be a mature design and try to find novel improvements. The initial idea is repeatedly modified and refined until the change reaches a point of diminishing improvement. Even after that point was supposedly reached and paper clip design seemed to have reached an ideal, multicolored plastic-coated paper clips were introduced as a new variation on a theme. This is an example of looking at an invention from a different perspective and seeing how it can be refined.

Finally, and very importantly, invention depends on technology. The paper clip could not have been invented and popularized fifty years earlier. Its design and mass production required inexpensive steel wire and machines that could cheaply, rapidly, and efficiently cut and bend it into useful shapes.

Without the technology to inexpensively mass-produce paper clips, they would have remained a novelty item. Technology not only makes invention possible, it makes it relevant. In our time, the technology of the personal computer created an entire industry of application software. Had computers never progressed beyond large expensive mainframes, this industry would not have been born.

What's the Problem?

The more specific and well defined the problem, the clearer the solution. If my problem statement is "I want to create an end to war," it will be very difficult to generate a clear and realistic solution. If my problem is "I want to develop a means of attaching a ticket to fabric," then solutions are easier to visualize. Constraints help to produce creative solutions. Boundaries provide clarity to the thought process. To invent, we need to think about the very specific problem we are solving. Paradoxically, the more sharply our problem is defined, the more room we have to dream up wild ideas.

As with any rule, there is a caveat to this one. Not every great invention was inspired by a problem. Sometimes, incredible inventions were created by luck or by chance or by "just fooling around." The problem solved was only discovered afterward. Chewing gum, mentioned previously, is an example of this. What prompted the inventor, Thomas Adams, to put a piece of his synthetic rubber product in his mouth? Boredom? Frustration? An instinctive desire to chew something soft and gooey? The genius here comes not in the invention, per se, but in realizing the nature of the "problem" that could be solved.

For most of us, as we proceed along the path to invent, the problem we want to solve will come first. Our challenge is to define the problem in a way that gives us a very specific and clear target to aim for but does not exclude possible solutions by its specificity. Let's look at some examples.

I sometimes give my students the following scenario and ask them to come up with solutions:

There is a serious problem at the county zoo. It seems that the elephants are getting too many cavities in their teeth. Your team is hired by the zoo to develop a way to prevent the elephants from developing so many cavities.

The teams go to work and, inevitably, they all come up with some kind of mechanical device to brush teeth. Of course, this is a solution to the problem. But the problem statement is broad enough to allow for many other—perhaps better—solutions as well, such as fluoridating the water or changing the elephants' diet.

Had the problem been defined as "Design a toothbrush for elephants," it would be a different problem.

Here's the rub: "Design a toothbrush for elephants" is a very clear and specific problem statement. I know exactly how to proceed; the rest is engineering. Within the constraint of making a toothbrush for elephants, I can do some very inventive engineering, but in the end, it will still be a toothbrush. The problem of preventing elephants from getting cavities gives way to a much greater variety of solutions. Imagine for a moment a team of biologists, chemists, and engineers attacking this problem at the beginning of the twentieth century. Let's say they were broad-minded and looked for nonobvious solutions. Perhaps they stumbled on the relationship between diet and tooth decay. Clearly, this discovery would have had a huge impact that went well beyond elephants.

We need to define our problem with great detail and specificity in order to create a clear picture in our minds of what needs to be solved. However, we do not want to limit possible solutions in the problem statement, nor do we want to suggest the solution in the problem statement. "Design a metal clip to attach a ticket to a piece of fabric" is an engineering problem. "Design a way to attach a ticket to a piece of fabric" opens up a whole new range of possibilities. However, this could be improved by adding constraints. "Design a low-cost ($0.10 or less) method to securely but nonpermanently attach a ticket to a piece of fabric" provides a clearer picture of the problem to be solved. By using the words method or way instead of clip, we don't solve the problem in the problem statement, thereby limiting possibilities. By using the constraints of low-cost and securely but nonpermanently, we set up clear boundaries for our solution.

Michelangelo's masterpiece statue David is a prime example of using constraints to enhance a creative solution. The story goes that a statue of the biblical hero David was originally commissioned and begun twenty-five years before Michelangelo was approached. The giant block of marble was already chiseled in many areas by the original artist, who discontinued his work partway through. The partially cut block then sat exposed to the elements for a quarter of a century during which it suffered additional erosion. When Michelangelo accepted the commission to finish the statue, he used all these constraints to his advantage, fashioning his powerful image of David out of this partially hewn and damaged block. He created tension in stone—a David on the verge of confronting Goliath. Had Michelangelo started from a pristine block of marble without these constraints, would this masterpiece have come into existence?

Is It the Right Problem?

It is worth spending time to truly understand the problem that needs to be solved before trying to generate solutions. As with a military engagement, it is essential to get "the lay of the land" before coming up with a strategy. Many times the problem you think you have turns out to be something else entirely. Sometimes, the problem you are trying to solve doesn't even exist.

In his book Conceptual Blockbusting, James Adams describes an attempt to design a device to retard or damp the opening of solar panels on the Mars Mariner IV spacecraft. The solar panels were designed to open in space, where there is no air. Engineers were concerned that the force of opening—with no opposing force to damp or slow the panels—would damage the fragile solar cells. Therefore, the problem was understood to be "Develop a mechanism to retard the opening force of solar panels so they are not damaged during deployment." The engineering team created several solutions to this problem, but none proved satisfactory. Finally, with time running out and the launch imminent, the engineering team went into full panic mode. Working twenty-four hours a day at great expense, the engineers struggled to make the damper more reliable, while measuring the effects on the delicate solar panels of all the various ways the damper might fail. One of the tests assumed that the damper would fail completely and that there would be nothing to slow the opening of the solar panels. To their amazement, the engineers found that even a complete failure of the damper did not lead to an unacceptable risk of damage to the solar panels. It was only necessary to provide a shock absorber that would cushion the panels as they snapped into position. Adams concluded, "The retarders were not, in fact, necessary at all."

The assumption that the solar panels would be damaged upon opening generated a faulty problem statement. Once the problem was initially stated, the engineers proceeded to seek a solution. Only the fact that a satisfactory solution eluded them led the team to discover that the problem they were solving didn't really exist.

Often, due to time or monetary pressures, problems are presented and not questioned. Whether you come up with an initial problem statement or the problem is given to you with the instruction to solve it, your job as the inventor is to pause and ask the important question: Is this the right problem? Other questions follow: Yes, I see that there is a problem here, but is it the true problem? Is the problem statement too broad or too narrow? Is the problem statement too suggestive of a solution? Are the constraints well defined? Is the context understood?

Reframing the Problem

The process of examining and restating a problem is often a greater creative act than determining the solution. As Jeff Bezos, founder of Amazon.com remarked, "The significance of an invention isn't how hard it is to copy, but how it reframes the problem in a new way." Reframing a problem can lead to an entirely different perspective on how to solve it. The idea of reframing a problem is analogous to reframing a picture. When you change the frame on a picture, you view it in a different way—even though it is the same picture. When you reframe a problem, you look at it differently. For example, the difference between the problem statement "Design a bridge" and "Design a method for crossing the river" is immense. The inventor needs to spend time understanding all the dimensions of the problem he seeks to solve before beginning to contemplate solutions. Invention is the right solution to the right problem.

(Continues...)



Excerpted from the ART of INVENTION by STEVEN J. PALEY Copyright © 2010 by Steven J. Paley. Excerpted by permission of Prometheus Books. All rights reserved. No part of this excerpt may be reproduced or reprinted without permission in writing from the publisher.
Excerpts are provided by Dial-A-Book Inc. solely for the personal use of visitors to this web site.

Table of Contents

Introduction 13

Part I The Process of Invention

Chapter 1 The Paper Clip and the Problem 19

What Makes a Great Idea Great? 19

The History of the Paper Clip 21

What's the Problem? 23

Is It the Right Problem? 25

Reframing the Problem 27

The Evolving Invention 27

Invention in Context 29

Chapter 2 The Hidden Obvious 31

The Destination 31

Being Confidently Naive 32

The Vision and the Visionary 34

Needfinding and Paradigms 36

Seeing the Hidden Obvious 39

The Vision Refined 44

Chapter 3 Creativity and the Brain 51

The Creative Mind 51

Feeding the Brain 53

Listening to Your Subconscious 55

Thinking with the Gut 58

Your Inner Senses 59

Working Ideas, Percolation, and Not Falling in Love 61

Action versus Thought: The Importance of Doing 63

Chapter 4 The Process of Invention 65

The Flash of Inspiration 65

The Resonance of an Idea 72

Sources of Innovation 72

Applications of Life Experience 73

Making the Familiar New 76

Applying Physical Principles 77

Accidental and Chance Observations 83

Learning from Nature 86

The Processes of Invention 97

Part II Design and Invention

Chapter 5 Simplicity 101

Profound Simplicity 101

The Simple and the Complex 111

Zero Mass Design 114

Chapter 6 Elegance 117

The Many Facets of Elegance 117

Ingenious Simplicity: The Most from the Least 119

Core Inventions: From Screws to Microprocessors 128

Adaptive Inventions: The Elegance of Self-Regulation 130

Smart Inventions: Inventions That Change with Change 133

Characteristics of Elegance-A Summary 142

Chapter 7 Robustness 143

Strength 143

Redundancy 145

Simplicity 147

Self-Healing 148

Managed Failure 151

Part III Making it Happen

Chapter 8 Problem Solving and Iteration 157

A Systems Approach: Connect the Big Pieces First 158

KISS: Keep It Simple, Stupid 159

Testing, Testing, 1, 2, 3 160

What You Couldn't See from There, You Can See from Here 162

Attacking from the Bottom 163

Inventing while You Sleep 165

Arbitrate and Iterate 166

Limiting the Scope 166

Stopping 167

Putting It All Together 168

Anticipating the Unanticipated 169

Documentation 170

Summary 171

Chapter 9 The Business of Invention 173

Inventing as an Employee 173

Selling Your Inventions 176

Entrepreneurship: Starting Your Own Company 179

Patents 186

The Business of Invention 191

Chapter 10 The Art of Invention 193

The Unexplored: Hard Work, Fear, and Fantasy 193

Experience and Invention 194

The Art of Getting It Wrong 196

The Hidden Obvious Revisited 197

Serendipity 199

The Staircase of Creativity 201

The Pleasure of the Problem 203

The Inventor's Tool Kit 204

Making It Real 204

The Art and the Science 205

The Future Is Yours to Create 206

Acknowledgments 207

Notes 209

Bibliography 215

Index 221

What People are Saying About This

Ronald D. Fellman

"A must-have for any inventor. Easy to read and understand with simple, clear examples. The Art of Invention teaches creative thinking in a way that inspires us to invent. Through numerous practical examples and fascinating case studies, Steven Paley guides us on a journey through the world of creativity in engineering. This is the first book that I have ever seen that shows both the aspiring and experienced inventor a clear path to successfully fulfill their goals." --(Ronald D. Fellman, Ph.D., former professor of electrical and computer engineering at the University of California at San Diego, a life-long inventor, founder of several high-tech start-ups including QVidium and Path1 Network Technologies.)

Bill Burnett

"Steven Paley gets it exactly right. Invention is both an art and a science and it starts with an appreciation for technology, a keen sense for business opportunities, and above all a deep understanding human need. It also requires a childlike curiosity, a sense of wonder, and the optimism to believe that you can make a difference. Read this book and be inspired." --(Bill Burnett, executive director of the Product Design Program and consulting assistant professor of mechanical engineering at Stanford University)

Henry Petroski

"Steven Paley's Art of Invention tells it like it is. This is an excellent introduction to the psychology of the inventor and to the nature of the inventive process." --(Henry Petroski, author of The Essential Engineer: Why Science Alone Will Not Solve Our Global Problems)

Thornburg

Steve has nailed it - Invention is an art we can all appreciate and experience for ourselves." --(David Thornburg, PhD, director, Thornburg Center for Space Exploration)

From the B&N Reads Blog

Customer Reviews