Progress in Optics

Progress in Optics

Progress in Optics

Progress in Optics

eBook

$235.00 

Available on Compatible NOOK Devices and the free NOOK Apps.
WANT A NOOK?  Explore Now

Related collections and offers


Overview

Progress in Optics Volume 45

Product Details

ISBN-13: 9780080930336
Publisher: Elsevier Science
Publication date: 07/01/2003
Series: ISSN , #45
Sold by: Barnes & Noble
Format: eBook
Pages: 410
File size: 7 MB

About the Author

Professor Wolf works at the University of Rochester, NY, USA

Table of Contents


Preface     v
Negative refractive index metamaterials in optics   Natalia M. Litchinitser   Ildar R. Gabitov   Andrei I. Maimistov   Vladimir M. Shalaev     1
Introduction     3
Ambidextrous light in a left-handed world     3
Negative index: Brief history     8
Optical negative index metamaterials: State of the art     8
Plasmonic NIMs     9
Loss management     13
Alternative approaches to negative refraction     15
Negative refraction and superlens     20
Negative refraction     20
Superlens     22
Enhanced nonlinearity and its origin in metamaterials     25
Optical bistability and solitons     27
Generalized nonlinear Schrodinger equation     28
Solitons in plasmonic nanostructures     30
Gap solitons     33
Optical bistability     35
Ultra-narrow spatial solitons     36
"Backward" phase-matching conditions: Implications for nonlinear optics     38
Second-harmonic generation     39
Optical parametric amplification     42
Surface polaritons, waveguides and resonators     44
Linear surfacepolaritons     44
Nonlinear surface polaritons     47
NIM slab as a linear waveguide     48
Linear waveguide in nonlinear surroundings     51
Nano-resonators     53
New frontiers: Metamaterials for cloaking     55
Summary     59
Acknowledgements     60
References     60
Polarization techniques for surface nonlinear optics   Martti Kauranen   Stefano Cattaneo     69
Introduction     71
Polarization effects in the nonlinear response of surfaces and thin films     73
Functional form of the measured signals     74
Approximation of unity refractive indices     76
Polarization arrangements for the characterization of nonlinear samples     78
Low-symmetry samples     86
Experimental considerations     87
Applications of polarization techniques     90
Chirality and circular-difference response     90
Higher-multipole contributions to the surface nonlinearity of isotropic materials     93
Complete theoretical model including linear optics     101
Geometry and notational conventions     104
Second-harmonic field exiting from a thick sample      108
Limit of zero thickness     111
Effect on the susceptibility components     113
Conclusions and outlook     115
Acknowledgements     116
References     117
Electromagnetic fields in linear bianisotropic mediums   Tom G. Mackay   Akhlesh Lakhtakia     121
Introduction     123
The Maxwell postulates and constitutive relations     124
Maxwell postulates     125
Constitutive relations     126
The frequency domain     127
6-vector/6 x 6 dyadic notation     129
Form invariances     130
Constitutive dyadics     135
Linear mediums     142
Isotropy     143
Anisotropy     144
Bianisotropy     151
Nonhomogeneous mediums     153
Plane-wave propagation     156
Uniform and non-uniform plane waves     157
Eigenanalysis     158
Isotropic scenarios     160
Anisotropic scenarios     161
Bianisotropic scenarios     168
Nonhomogeneous mediums     170
Plane waves with negative phase velocity     174
Dyadic Green functions      175
Definition and properties     176
Closed-form representations     178
Eigenfunction representations     183
Depolarization dyadics     185
Homogenization     192
Constituent mediums     193
Maxwell Garnett formalism     194
Bruggeman formalism     195
Strong-property-fluctuation theory     197
Anisotropy and bianisotropy via homogenization     200
Closing remarks     201
References     202
Ultrafast optical pulses   Clifford R. Pollock     21
Overview of ultrashort optical pulses     213
Historic developments in short optical pulse development     213
Outline of chapter     214
Fundamental properties of optical pulses     215
Amplitudes, envelopes, and intensity     215
Phase, frequency, and group delay     218
Time-bandwidth product     220
The "zero area" pulse     221
Ultrashort-pulse generation     222
Spectral properties of ultrafast laser materials     222
Modelocking issues     224
Active and passive modulation     226
Modelocking schemes      228
Ultrafast-pulse characterization     236
Autocorrelation     237
Frequency-resolved optical gating (FROG)     239
Ultrafast Ti:sapphire lasers and amplifiers     240
Dispersion control     240
Ultrashort Ti:sapphire lasers     242
Ti:sapphire amplifiers     243
Attosecond pulses     244
Conclusion     246
References     247
Quantum imaging   Alessandra Gatti   Enrico Brambilla   Luigi Lugiato     251
Introduction to quantum imaging     253
Optical parametric down-conversion of type I     255
Spatially multimode versus single-mode squeezing     260
Spatial structure of squeezed vacuum states in the degenerate optical parametric oscillator below threshold     261
Quantum images in the OPO above and below threshold     264
The interference of signal and idler waves in type I PDC     271
Quantum spatial intensity correlations in optical parametric down-conversion     274
Degenerate OPO below threshold, spatial quantum correlation and entanglement     275
Multimode-model for single-pass parametric down-conversion     279
Single-pass PDC of type I. Near-field/far-field duality      282
Single-pass PDC of type II. Simultaneous near-field and far-field spatial correlation     285
Detection of sub-shot-noise spatial correlation in the high gain regime of type II PDC. Spatial analogue of photon antibunching     288
Detection of weak amplitude objects beyond the standard quantum limit     295
Multimode polarization entanglement in high-gain PDC     295
Ghost imaging     298
General theory of ghost imaging with entangled beams     300
Two paradigmatic imaging schemes     302
Spatial average in ghost diffraction: Increase of spatial bandwidth and of speed in retrieval. Homodyne detection scheme     305
Debate: Is quantum entanglement really necessary for ghost imaging?     307
Ghost imaging by splitted thermal-like beams: Theory     309
Resolution aspects, correlation aspects, visibility aspects     311
Ghost imaging with splitted thermal beams: Experiment     313
Complementarity between "thermal" ghost imaging and the classic Hanbury-Brown-Twiss (HBT) correlation technique, with respect to spatial coherence     317
Image amplification by parametric down-conversion     319
Twin (quantum entangled) images     319
Noiseless amplification of images     321
Theory of noiseless amplification of optical images      324
Noiseless amplification of optical images: Experiments in the pumped regime     326
Noiseless amplification of optical images: Experiment in the cw regime. Experimental observation of twin images     328
The quantum laser pointer     329
1D experiment     331
2D quantum laser pointer     332
Miscellaneous     335
Object reconstruction     336
Entangled two-photon microscopy     337
Quantum-optical coherence tomography     338
Quantum ellipsometry     338
Transverse distribution of quantum fluctuations in free-space spatial solitons     338
Quantum fluctuations in cavity solitons     339
Quantum holographic teleportation and dense coding of optical images     339
Quantum-optical lithography     341
References     343
Assessment of optical systems by means of point-spread functions   Joseph J.M. Braat   Sven van Haver   Augustus J.E.M. Janssen   Peter Dirksen     349
Introduction     351
The optical point-spread function     352
Quality assessment by inverse problem solving     354
Theory of point-spread function formation     355
Field representations and the diffraction integral      355
The Debye integral for focused fields     359
The Rayleigh-I integral for focused fields     362
Comparison of the various diffraction integrals     364
The amplitude of the point-spread function produced by an optical system     367
Analytic expressions for the point-spread function in the focal region (scalar case)     376
Analytic expressions for the point-spread function in the vector diffraction case     384
The point-spread function in a stratified medium     389
Energy density and power flow in the focal region     391
Expression for the electric energy density     391
Expression for the Poynting vector     403
Quality assessment by inverse problem solution     409
Intensity measurements and phase retrieval     410
The optical inverse problem for finite-aperture imaging systems     411
Solving the optical inverse problem using phase diversity     415
Quality assessment using the Extended Nijboer-Zernike diffraction theory     417
Scalar retrieval process using the Extended Nijboer-Zernike theory     419
Pupil function retrieval for high-NA imaging systems     431
Retrieval examples for high-NA systems     435
Conclusion and outlook      454
Acknowledgements     455
Derivation of Weyl's plane wave expansion of a spherical wave     456
The Debye integral in the presence of aberrations     457
Series expansion of the diffraction integral at large defocus     458
Series expansion for the diffraction integral V[superscript m subscript n,j](r, f)     459
Expansion using the functions V[superscript m subscript n] (r, f)     460
Expansion using the functions T[superscript m subscript n] (r, f)     461
The predictor-corrector procedure     463
Zernike coefficients for circularly symmetric polarization states     465
References     466
The discrete Wigner function   Gunnar Bjork   Andrei B. Klimov   Luis L. Sanchez-Soto     469
Introduction     471
Continuous Wigner function     476
Discrete finite space and finite fields     477
The generalized Pauli group     480
Prime-dimensional spaces     480
Power-of-a-prime-dimensional spaces     481
Mutually unbiased bases     485
The discrete Wigner function     488
Wigner function in prime-dimensional spaces     488
Wigner function in composite-dimensional spaces      495
Wigner function for p[superscript N]-dimensional space     496
Reconstruction of the density operator from the discrete Wigner function     498
Lines and rays     498
Marginal probability density and the density operator     500
Tomographic reconstruction     501
Rotation operators     502
The phase of the displacement operator     507
Applications     509
Discussion and outlook     512
Acknowledgements     513
References     514
Author index for Volume 51     517
Subject index for volume 51     533
Contents of previous volumes     537
Cumulative index - Volumes 1-51     549

What People are Saying About This

From the Publisher

Your essential source for the latest developments in Optics

From the B&N Reads Blog

Customer Reviews