Probability with Martingales
This is a masterly introduction to the modern and rigorous theory of probability. The author adopts the martingale theory as his main theme and moves at a lively pace through the subject's rigorous foundations. Measure theory is introduced and then immediately exploited by being applied to real probability theory. Classical results, such as Kolmogorov's Strong Law of Large Numbers and Three-Series Theorem are proved by martingale techniques. A proof of the Central Limit Theorem is also given. The author's style is entertaining and inimitable with pedagogy to the fore. Exercises play a vital role; there is a full quota of interesting and challenging problems, some with hints.
1100956957
Probability with Martingales
This is a masterly introduction to the modern and rigorous theory of probability. The author adopts the martingale theory as his main theme and moves at a lively pace through the subject's rigorous foundations. Measure theory is introduced and then immediately exploited by being applied to real probability theory. Classical results, such as Kolmogorov's Strong Law of Large Numbers and Three-Series Theorem are proved by martingale techniques. A proof of the Central Limit Theorem is also given. The author's style is entertaining and inimitable with pedagogy to the fore. Exercises play a vital role; there is a full quota of interesting and challenging problems, some with hints.
55.0 In Stock
Probability with Martingales

Probability with Martingales

by David Williams
Probability with Martingales

Probability with Martingales

by David Williams

Paperback(New Edition)

$55.00 
  • SHIP THIS ITEM
    In stock. Ships in 1-2 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

This is a masterly introduction to the modern and rigorous theory of probability. The author adopts the martingale theory as his main theme and moves at a lively pace through the subject's rigorous foundations. Measure theory is introduced and then immediately exploited by being applied to real probability theory. Classical results, such as Kolmogorov's Strong Law of Large Numbers and Three-Series Theorem are proved by martingale techniques. A proof of the Central Limit Theorem is also given. The author's style is entertaining and inimitable with pedagogy to the fore. Exercises play a vital role; there is a full quota of interesting and challenging problems, some with hints.

Product Details

ISBN-13: 9780521406055
Publisher: Cambridge University Press
Publication date: 02/14/1991
Series: Cambridge Mathematical Textbooks
Edition description: New Edition
Pages: 265
Product dimensions: 5.98(w) x 8.98(h) x 0.67(d)

Table of Contents

1. A branching-process example; Part I. Foundations: 2. Measure spaces; 3. Events; 4. Random variables; 5. Independence; 6. Integration; 7. Expectation; 8. An easy strong law: product measure; Part II. Martingale Theory: 9. Conditional expectation; 10. Martingales; 11. The convergence theorem; 12. Martingales bounded in L2; 13. Uniform integrability; 14. UI martingales; 15. Applications; Part III. Characteristic Functions: 16. Basic properties of CFs; 17. Weak convergence; 18. The central limit theorem; Appendices; Exercises.
From the B&N Reads Blog

Customer Reviews