Data Management for Multimedia Retrieval
Multimedia data require specialized management techniques because the representations of color, time, semantic concepts, and other underlying information can be drastically different from one another. The user’s subjective judgment can also have significant impact on what data or features are relevant in a given context. These factors affect both the performance of the retrieval algorithms and their effectiveness. This textbook on multimedia data management techniques offers a unified perspective on retrieval efficiency and effectiveness. It provides a comprehensive treatment, from basic to advanced concepts, that will be useful to readers of different levels, from advanced undergraduate and graduate students to researchers and to professionals. After introducing models for multimedia data (images, video, audio, text, and web) and for their features, such as color, texture, shape, and time, the book presents data structures and algorithms that help store, index, cluster, classify, and access common data representations. The authors also introduce techniques, such as relevance feedback and collaborative filtering, for bridging the “semantic gap” and present the applications of these to emerging topics, including web and social networking.
1100959365
Data Management for Multimedia Retrieval
Multimedia data require specialized management techniques because the representations of color, time, semantic concepts, and other underlying information can be drastically different from one another. The user’s subjective judgment can also have significant impact on what data or features are relevant in a given context. These factors affect both the performance of the retrieval algorithms and their effectiveness. This textbook on multimedia data management techniques offers a unified perspective on retrieval efficiency and effectiveness. It provides a comprehensive treatment, from basic to advanced concepts, that will be useful to readers of different levels, from advanced undergraduate and graduate students to researchers and to professionals. After introducing models for multimedia data (images, video, audio, text, and web) and for their features, such as color, texture, shape, and time, the book presents data structures and algorithms that help store, index, cluster, classify, and access common data representations. The authors also introduce techniques, such as relevance feedback and collaborative filtering, for bridging the “semantic gap” and present the applications of these to emerging topics, including web and social networking.
77.0 In Stock
Data Management for Multimedia Retrieval

Data Management for Multimedia Retrieval

Data Management for Multimedia Retrieval

Data Management for Multimedia Retrieval

Hardcover(New Edition)

$77.00 
  • SHIP THIS ITEM
    In stock. Ships in 1-2 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

Multimedia data require specialized management techniques because the representations of color, time, semantic concepts, and other underlying information can be drastically different from one another. The user’s subjective judgment can also have significant impact on what data or features are relevant in a given context. These factors affect both the performance of the retrieval algorithms and their effectiveness. This textbook on multimedia data management techniques offers a unified perspective on retrieval efficiency and effectiveness. It provides a comprehensive treatment, from basic to advanced concepts, that will be useful to readers of different levels, from advanced undergraduate and graduate students to researchers and to professionals. After introducing models for multimedia data (images, video, audio, text, and web) and for their features, such as color, texture, shape, and time, the book presents data structures and algorithms that help store, index, cluster, classify, and access common data representations. The authors also introduce techniques, such as relevance feedback and collaborative filtering, for bridging the “semantic gap” and present the applications of these to emerging topics, including web and social networking.

Product Details

ISBN-13: 9780521887397
Publisher: Cambridge University Press
Publication date: 05/31/2010
Edition description: New Edition
Pages: 500
Product dimensions: 7.20(w) x 10.10(h) x 1.10(d)

About the Author

K. Selçuk Candan is a Professor of Computer Science and Engineering at Arizona State University. He received his Ph.D. in 1997 from the University of Maryland at College Park. Candan has authored more than 120 conference and journal articles, 9 patents, and many book chapters and, among his other scientific positions, has served as program chair for ACM Multimedia Conference '08, the Int. Conference on Image and Video Retrieval (CIVR'10), and as an organizing committee member for ACM SIG Management of Data Conference (SIGMOD'06). Since 2005, he has also served as an editorial board member for the Very Large Databases (VLDB) journal.

Maria Luisa Sapino is a Professor in the Department of Computer Science at the University of Torino, where she also earned her Ph.D. There she leads the multimedia and heterogeneous data management group. Her scientific contributions include more than 60 conference and journal papers; her services as chair, organizer, and program committee member in major conferences and workshops on multimedia; and her collaborations with industrial research labs, including the RAI-Crit (Center for Research and Technological Innovation) and Telecom Italia Lab, on multimedia technologies.

Table of Contents

1. Introduction: multimedia applications and data management requirements; 2. Models for multimedia data; 3. Common representations of multimedia features; 4. Feature quality and independence: why and how?; 5. Indexing, search, and retrieval of sequences; 6. Indexing, search, retrieval of graphs and trees; 7. Indexing, search, and retrieval of vectors; 8. Clustering techniques; 9. Classification; 10. Ranked retrieval; 11. Evaluation of retrieval; 12. User relevance feedback and collaborative filtering.
From the B&N Reads Blog

Customer Reviews