The Basics of Information Security: Understanding the Fundamentals of InfoSec in Theory and Practice

As part of the Syngress Basics series, The Basics of Information Security provides you with fundamental knowledge of information security in both theoretical and practical aspects. It covers the basic knowledge needed to understand the key concepts of confidentiality, integrity, and availability. Then it dives into practical applications of these ideas in the areas of operational, physical, network, application, and operating system security.




  • Learn about information security without wading through huge manuals

  • Covers both theoretical and practical aspects of information security

  • Gives a broad view of the information security field for practitioners, students, and enthusiasts
1103038924
The Basics of Information Security: Understanding the Fundamentals of InfoSec in Theory and Practice

As part of the Syngress Basics series, The Basics of Information Security provides you with fundamental knowledge of information security in both theoretical and practical aspects. It covers the basic knowledge needed to understand the key concepts of confidentiality, integrity, and availability. Then it dives into practical applications of these ideas in the areas of operational, physical, network, application, and operating system security.




  • Learn about information security without wading through huge manuals

  • Covers both theoretical and practical aspects of information security

  • Gives a broad view of the information security field for practitioners, students, and enthusiasts
22.49 In Stock
The Basics of Information Security: Understanding the Fundamentals of InfoSec in Theory and Practice

The Basics of Information Security: Understanding the Fundamentals of InfoSec in Theory and Practice

by Jason Andress
The Basics of Information Security: Understanding the Fundamentals of InfoSec in Theory and Practice

The Basics of Information Security: Understanding the Fundamentals of InfoSec in Theory and Practice

by Jason Andress

eBook

$22.49  $29.95 Save 25% Current price is $22.49, Original price is $29.95. You Save 25%.

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers


Overview

As part of the Syngress Basics series, The Basics of Information Security provides you with fundamental knowledge of information security in both theoretical and practical aspects. It covers the basic knowledge needed to understand the key concepts of confidentiality, integrity, and availability. Then it dives into practical applications of these ideas in the areas of operational, physical, network, application, and operating system security.




  • Learn about information security without wading through huge manuals

  • Covers both theoretical and practical aspects of information security

  • Gives a broad view of the information security field for practitioners, students, and enthusiasts

Product Details

ISBN-13: 9781597496544
Publisher: Elsevier Science
Publication date: 07/16/2011
Sold by: Barnes & Noble
Format: eBook
Pages: 208
File size: 2 MB

About the Author

Jason Andress (CISSP, ISSAP, CISM, GPEN) is a seasoned security professional with a depth of experience in both the academic and business worlds. Presently he carries out information security oversight duties, performing penetration testing, risk assessment, and compliance functions to ensure that critical assets are protected. Jason has taught undergraduate and graduate security courses since 2005 and holds a doctorate in computer science, researching in the area of data protection. He has authored several publications and books, writing on topics including data security, network security, penetration testing, and digital forensics.

Read an Excerpt

The Basics of Information Security

Understanding the Fundamentals of InfoSec in Theory and Practice
By Jason Andress

SYNGRESS

Copyright © 2011 Elsevier Inc.
All right reserved.

ISBN: 978-1-59749-654-4


Chapter One

What is Information Security?

Information in This Chapter:

* What is Security?

* Models for Discussing Security Issues

* Attacks

* Defense in Depth

INTRODUCTION

Information security is a concept that becomes ever more enmeshed in many aspects of our society, largely as a result of our nearly ubiquitous adoption of computing technology. In our everyday lives, many of us work with computers for our employers, play on computers at home, go to school online, buy goods from merchants on the Internet, take our laptops to the coffee shop and check our e-mail, carry our smartphones on our hips and use them to check our bank balances, track our exercise with sensors in our shoes, and so on, ad infinitum.

Although this technology enables us to be more productive and allows us to access a host of information with only a click of the mouse, it also carries with it a host of security issues. If the information on the systems used by our employers or our banks becomes exposed to an attacker, the consequences can be dire indeed. We could suddenly find ourselves bereft of funds, as the contents of our bank account are transferred to a bank in another country in the middle of the night. Our employer could lose millions of dollars, face legal prosecution, and suffer damage to its reputation because of a system configuration issue allowing an attacker to gain access to a database containing personally identifiable information (PII) or proprietary information. We see such issues appear in the media with disturbing regularity.

If we look back 30 years, such issues related to computer systems were nearly nonexistent, largely due to the low level of technology and the few people who were using what was in place. Although technology changes at an increasingly rapid rate, and specific implementations arise on a seemingly daily basis, much of the theory that discusses how we go about keeping ourselves secure changes at a much slower pace and does not always keep up with the changes to our technology. If we can gain a good understanding of the basics of information security, we are on a strong footing to cope with changes as they come along.

WHAT IS SECURITY?

Information security is defined as "protecting information and information systems from unauthorized access, use, disclosure, disruption, modification, or destruction," according to U.S. law. In essence, it means we want to protect our data and our systems from those who would seek to misuse it.

In a general sense, security means protecting our assets. This may mean protecting them from attackers invading our networks, natural disasters, adverse environmental conditions, power failures, theft or vandalism, or other undesirable states. Ultimately, we will attempt to secure ourselves against the most likely forms of attack, to the best extent we reasonably can, given our environment.

When we look at what exactly it is that we secure, we may have a broad range of potential assets. We can consider physical items that we might want to secure, such as those of inherent value (e.g., gold bullion) or those that have value to our business (e.g., computing hardware). We may also have items of a more ethereal nature, such as software, source code, or data. In today's computing environment, we are likely to find that our logical assets are at least as valuable as, if not more than, our physical assets. Additionally, we must also protect the people who are involved in our operations. People are our single most valuable asset, as we cannot generally conduct business without them. We duplicate our physical and logical assets and keep backup copies of them elsewhere against catastrophe occurring, but without the skilled people to operate and maintain our environments, we will swiftly fail.

In our efforts to secure our assets, we must also consider the consequences of the security we choose to implement. There is a well-known quote that says, "The only truly secure system is one that is powered off, cast in a block of concrete and sealed in a lead-lined room with armed guards—and even then I have my doubts". Although we could certainly say that a system in such a state could be considered reasonably secure, it is surely not usable or productive. As we increase the level of security, we usually decrease the level of productivity. With the system mentioned in our quote, the level of security would be very high, but the level of productivity would be very near zero.

Additionally, when securing an asset, system, or environment, we must also consider how the level of security relates to the value of the item being secured. We can, if we are willing to accommodate the decrease in performance, apply very high levels of security to every asset for which we are responsible. We can build a billion-dollar facility surrounded by razor wire fences and patrolled by armed guards and vicious attack dogs, and carefully place our asset in a hermetically sealed vault inside ... so that mom's chocolate chip cookie recipe will never come to harm, but that would not make much sense. In some environments, however, such security measures might not be enough. In any environment where we plan to put heightened levels of security in place, we also need to take into account the cost of replacing our assets if we do happen to lose them, and make sure we establish reasonable levels of protection for their value. The cost of the security we put in place should never outstrip the value of what it is protecting.

When Are We Secure?

Defining the exact point at which we can be considered secure presents a bit of a challenge. Are we secure if our systems are properly patched? Are we secure if we use strong passwords? Are we secure if we are disconnected from the Internet entirely? From a certain point of view, all of these questions can be answered with a "no."

Even if our systems are properly patched, there will always be new attacks to which we are vulnerable. When strong passwords are in use, there will be other avenues that an attacker can exploit. When we are disconnected from the Internet, our systems can be physically accessed or stolen. In short, it is very difficult to define when we are truly secure. We can, however, turn the question around.

Defining when we are insecure is a much easier task, and we can quickly list a number of items that would put us in this state:

* Not patching our systems

* Using weak passwords such as "password" or "1234"

* Downloading programs from the Internet

* Opening e-mail attachments from unknown senders

* Using wireless networks without encryption

We could go on for some time creating such a list. The good thing is that once we are able to point out the areas in an environment that can cause it to be insecure, we can take steps to mitigate these issues. This problem is akin to cutting something in half over and over; there will always be some small portion left to cut again. Although we may never get to a state that we can definitively call "secure," we can take steps in the right direction.

Some bodies of law or regulations do make an attempt to define what secure is, or at least some of the steps we should take to be "secure enough." We have the Payment Card Industry Data Security Standard (PCI DSS) for companies that process credit card payments, the Health Insurance Portability and Accountability Act of 1996 (HIPAA) for organizations that handle health care and patient records, the Federal Information Security Management Act (FISMA) that defines security standards for many federal agencies in the United States, and a host of others. Whether these standards are effective or not is the source of much discussion, but following the security standards defined for the industry in which we are operating is generally considered to be advisable, if not mandated.

MODELS FOR DISCUSSING SECURITY ISSUES

When we discuss security issues, it is often helpful to have a model that we can use as a foundation or a baseline. This gives us a consistent set of terminology and concepts that we, as security professionals, can refer to when security issues arise.

The Confidentiality, Integrity, and Availability Triad

Three of the primary concepts in information security are confidentiality, integrity, and availability, commonly known as the confidentiality, integrity, and availability (CIA) triad, as shown in Figure 1.1. The CIA triad gives us a model by which we can think about and discuss security concepts, and tends to be very focused on security, as it pertains to data.

CONFIDENTIALITY

Confidentiality is a concept similar to, but not the same as, privacy. Confidentiality is a necessary component of privacy and refers to our ability to protect our data from those who are not authorized to view it. Confidentiality is a concept that may be implemented at many levels of a process.

As an example, if we consider the case of a person withdrawing money from an ATM, the person in question will likely seek to maintain the confidentiality of the personal identification number (PIN) that allows him, in combination with his ATM card, to draw funds from the ATM. Additionally, the owner of the ATM will hopefully maintain the confidentiality of the account number, balance, and any other information needed to communicate to the bank from which the funds are being drawn. The bank will maintain the confidentiality of the transaction with the ATM and the balance change in the account after the funds have been withdrawn. If at any point in the transaction confidentiality is compromised, the results could be bad for the individual, the owner of the ATM, and the bank, potentially resulting in what is known in the information security field as a breach.

Confidentiality can be compromised by the loss of a laptop containing data, a person looking over our shoulder while we type a password, an e-mail attachment being sent to the wrong person, an attacker penetrating our systems, or similar issues.

INTEGRITY

Integrity refers to the ability to prevent our data from being changed in an unauthorized or undesirable manner. This could mean the unauthorized change or deletion of our data or portions of our data, or it could mean an authorized, but undesirable, change or deletion of our data. To maintain integrity, we not only need to have the means to prevent unauthorized changes to our data but also need the ability to reverse authorized changes that need to be undone.

We can see a good example of mechanisms that allow us to control integrity in the file systems of many modern operating systems such as Windows and Linux. For purposes of preventing unauthorized changes, such systems often implement permissions that restrict what actions an unauthorized user can perform on a given file. Additionally, some such systems, and many applications, such as databases, can allow us to undo or roll back changes that are undesirable.

Integrity is particularly important when we are discussing the data that provides the foundation for other decisions. If an attacker were to alter the data that contained the results of medical tests, we might see the wrong treatment prescribed, potentially resulting in the death of the patient.

AVAILABILITY

The final leg of the CIA triad is availability. Availability refers to the ability to access our data when we need it. Loss of availability can refer to a wide variety of breaks anywhere in the chain that allows us access to our data. Such issues can result from power loss, operating system or application problems, network attacks, compromise of a system, or other problems. When such issues are caused by an outside party, such as an attacker, they are commonly referred to as a denial of service (DoS) attack.

RELATING THE CIA TRIAD TO SECURITY

Given the elements of the CIA triad, we can begin to discuss security issues in a very specific fashion. As an example, we can look at a shipment of backup tapes on which we have the only existing, but unencrypted, copy of some of our sensitive data stored. If we were to lose the shipment in transit, we will have a security issue. From a confidentiality standpoint, we are likely to have a problem since our files were not encrypted. From an integrity standpoint, presuming that we were able to recover the tapes, we again have an issue due to the lack of encryption used on our files. If we recover the tapes and the unencrypted files were altered, this would not be immediately apparent to us. As for availability, we have an issue unless the tapes are recovered since we do not have a backup copy of the files.

Although we can describe the situation in this example with relative accuracy using the CIA triad, we might find that the model is more restrictive than what we need in order to describe the entire situation. An alternative model does exist that is somewhat more extensive.

(Continues...)



Excerpted from The Basics of Information Security by Jason Andress Copyright © 2011 by Elsevier Inc.. Excerpted by permission of SYNGRESS. All rights reserved. No part of this excerpt may be reproduced or reprinted without permission in writing from the publisher.
Excerpts are provided by Dial-A-Book Inc. solely for the personal use of visitors to this web site.

Table of Contents

Chapter 1. What is Information Security? Chapter 2. Identification and Authentication Chapter 3. Authorization and Access control Chapter 4. Auditing and Accountability Chapter 5. Cryptography Chapter 6. Operations security Chapter 7. Physical security Chapter 8. Network security Chapter 9. Operating System security Chapter 10. Application security

What People are Saying About This

From the Publisher

Understand the basics of information security in both theory and practice.

From the B&N Reads Blog

Customer Reviews