50 Years of Integer Programming 1958-2008: From the Early Years to the State-of-the-Art / Edition 1

50 Years of Integer Programming 1958-2008: From the Early Years to the State-of-the-Art / Edition 1

by Michael Junger
     
 

ISBN-10: 3540682740

ISBN-13: 9783540682745

Pub. Date: 01/26/2010

Publisher: Springer Berlin Heidelberg

In 1958, Ralph E. Gomory transformed the field of integer programming when he published a short paper that described his cutting-plane algorithm for pure integer programs and announced that the method could be refined to give a finite algorithm for integer programming. In January of 2008, to commemorate the anniversary of Gomory's seminal paper, a special session

…  See more details below

Overview

In 1958, Ralph E. Gomory transformed the field of integer programming when he published a short paper that described his cutting-plane algorithm for pure integer programs and announced that the method could be refined to give a finite algorithm for integer programming. In January of 2008, to commemorate the anniversary of Gomory's seminal paper, a special session celebrating fifty years of integer programming was held in Aussois, France, as part of the 12th Combinatorial Optimization Workshop. This book is based on the material presented during this session.
50 Years of Integer Programming offers an account of featured talks at the 2008 Aussois workshop, namely
- Michele Conforti, Gérard Cornuéjols, and Giacomo Zambelli: Polyhedral Approaches to Mixed Integer Linear Programming
- William Cook: 50+ Years of Combinatorial Integer Programming
- Francois Vanderbeck and Laurence A. Wolsey: Reformulation and Decomposition of Integer Programs
The book contains reprints of key historical articles together with new introductions and historical perspectives by the authors: Egon Balas, Michel Balinski, Jack Edmonds, Ralph E. Gomory, Arthur M. Geoffrion, Alan J. Hoffman & Joseph B. Kruskal, Richard M. Karp, Harold W. Kuhn, and Ailsa H. Land & Alison G. Doig.
It also contains written versions of survey lectures on six of the hottest topics in the field by distinguished members of the integer programming community:
- Friedrich Eisenbrand: Integer Programming and Algorithmic Geometry of Numbers
- Raymond Hemmecke, Matthias Köppe, Jon Lee, and Robert Weismantel: Nonlinear Integer Programming
- Andrea Lodi: Mixed Integer Programming Computation
- Francois Margot: Symmetry in Integer Linear Programming
- Franz Rendl: Semidefinite Relaxations for Integer Programming
- Jean-Philippe P. Richard and Santanu S. Dey: The Group-Theoretic Approach to Mixed Integer Programming
Integer programming holds great promise for the future, and continues to build on its foundations. Indeed, Gomory's finite cutting-plane method for the pure integer case is currently being reexamined and is showing new promise as a practical computational method. This book is a uniquely useful celebration of the past, present and future of this important and active field. Ideal for students and researchers in mathematics, computer science and operations research, it exposes mathematical optimization, in particular integer programming and combinatorial optimization, to a broad audience.

Read More

Product Details

ISBN-13:
9783540682745
Publisher:
Springer Berlin Heidelberg
Publication date:
01/26/2010
Edition description:
2010
Pages:
804
Product dimensions:
6.50(w) x 9.40(h) x 1.70(d)

Table of Contents

I The Early Years.- Solution of a Large-Scale Traveling-Salesman Problem.- The Hungarian Method for the Assignment Problem.- Integral Boundary Points of Convex Polyhedra.- Outline of an Algorithm for Integer Solutions to Linear Programs An Algorithm for the Mixed Integer Problem.- An Automatic Method for Solving Discrete Programming Problems.- Integer Programming: Methods, Uses, Computation.- Matroid Partition.- Reducibility Among Combinatorial Problems.- Lagrangian Relaxation for Integer Programming.- Disjunctive Programming.- II From the Beginnings to the State-of-the-Art.- Polyhedral Approaches to Mixed Integer Linear Programming.- Fifty-Plus Years of Combinatorial Integer Programming.- Reformulation and Decomposition of Integer Programs.- III Current Topics.- Integer Programming and Algorithmic Geometry of Numbers.- Nonlinear Integer Programming.- Mixed Integer Programming Computation.- Symmetry in Integer Linear Programming.- Semidefinite Relaxations for Integer Programming.- The Group-Theoretic Approach in Mixed Integer Programming.

Read More

Customer Reviews

Average Review:

Write a Review

and post it to your social network

     

Most Helpful Customer Reviews

See all customer reviews >