Graphene Nanostructures: Modeling, Simulation, and Applications in Electronics and Photonics
Tremendous innovations in electronics and photonics over the past few decades have resulted in the downsizing of transistors in integrated circuits, which are now approaching atomic scales. This will soon result in the creation of a growing knowledge gap between the underlying technology and state-of-the-art electronic device modeling and simulations. This book bridges the gap by presenting cutting-edge research in the computational analysis and mathematical modeling of graphene nanostructures as well as the recent progress on graphene transistors for nanoscale circuits. It inspires and educates fellow circuit designers and students in the field of emerging low-power and high-performance circuit designs based on graphene. While most of the books focus on the synthesis, fabrication, and characterization of graphene, this book shines a light on graphene models and their circuit simulations and applications in photonics. It will serve as a textbook for graduate-level courses in nanoscale electronics and photonics design and appeal to anyone involved in electrical engineering, applied physics, materials science, or nanotechnology research.

1129808579
Graphene Nanostructures: Modeling, Simulation, and Applications in Electronics and Photonics
Tremendous innovations in electronics and photonics over the past few decades have resulted in the downsizing of transistors in integrated circuits, which are now approaching atomic scales. This will soon result in the creation of a growing knowledge gap between the underlying technology and state-of-the-art electronic device modeling and simulations. This book bridges the gap by presenting cutting-edge research in the computational analysis and mathematical modeling of graphene nanostructures as well as the recent progress on graphene transistors for nanoscale circuits. It inspires and educates fellow circuit designers and students in the field of emerging low-power and high-performance circuit designs based on graphene. While most of the books focus on the synthesis, fabrication, and characterization of graphene, this book shines a light on graphene models and their circuit simulations and applications in photonics. It will serve as a textbook for graduate-level courses in nanoscale electronics and photonics design and appeal to anyone involved in electrical engineering, applied physics, materials science, or nanotechnology research.

149.95 In Stock
Graphene Nanostructures: Modeling, Simulation, and Applications in Electronics and Photonics

Graphene Nanostructures: Modeling, Simulation, and Applications in Electronics and Photonics

Graphene Nanostructures: Modeling, Simulation, and Applications in Electronics and Photonics

Graphene Nanostructures: Modeling, Simulation, and Applications in Electronics and Photonics

Hardcover

$149.95 
  • SHIP THIS ITEM
    In stock. Ships in 3-7 days. Typically arrives in 3 weeks.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

Tremendous innovations in electronics and photonics over the past few decades have resulted in the downsizing of transistors in integrated circuits, which are now approaching atomic scales. This will soon result in the creation of a growing knowledge gap between the underlying technology and state-of-the-art electronic device modeling and simulations. This book bridges the gap by presenting cutting-edge research in the computational analysis and mathematical modeling of graphene nanostructures as well as the recent progress on graphene transistors for nanoscale circuits. It inspires and educates fellow circuit designers and students in the field of emerging low-power and high-performance circuit designs based on graphene. While most of the books focus on the synthesis, fabrication, and characterization of graphene, this book shines a light on graphene models and their circuit simulations and applications in photonics. It will serve as a textbook for graduate-level courses in nanoscale electronics and photonics design and appeal to anyone involved in electrical engineering, applied physics, materials science, or nanotechnology research.


Product Details

ISBN-13: 9789814800365
Publisher: Jenny Stanford Publishing
Publication date: 07/23/2019
Pages: 224
Product dimensions: 6.00(w) x 9.00(h) x (d)

About the Author

Yaser M. Banadaki is assistant professor at the Department of Computer Science, College of Science and Engineering, Southern University and A&M College, Baton Rouge, Louisiana, USA. He received his PhD in electrical and computer engineering from Louisiana State University (LSU), USA, in 2016. His current research focuses on the computational modeling and experimental validation of novel materials and nanostructures for information technology and sensor devices. He is also interested in material knowledge discovery techniques using machine learning algorithms.

Safura Sharifi is a quantum technology researcher at the Hearne Institute for Theoretical Physics, LSU. She received her PhD in electrical engineering from LSU in 2019. Her current research focuses on machine learning, quantum technology, and 2D materials for information technology.

Table of Contents

Introduction to Graphene. Graphene for Integrated Circuits. Computational Carrier Transport Model of GNRFET. Scaling Effects on Performance of GNRFETs. Width-dependent Performance of GNRFETs. A Spice Physics–based Circuit Model of GNRFET. Graphene-based Circuits Design. Graphene Sensing and Energy Recovery. Graphene Photonic Properties and Applications. Graphene-based Thermal Emitter.

From the B&N Reads Blog

Customer Reviews