A First Course in Harmonic Analysis
The second part of the book concludes with Plancherel’s theorem in Chapter 8. This theorem is a generalization of the completeness of the Fourier series, as well as of Plancherel’s theorem for the real line. The third part of the book is intended to provide the reader with a first impression of the world of non-commutative harmonic analysis. Chapter 9 introduces methods that are used in the analysis of matrix groups, such as the theory of the exponential series and Lie algebras. These methods are then applied in Chapter 10 to arrive at a clas-—cation of the representations of the group SU(2). In Chapter 11 we give the Peter-Weyl theorem, which generalizes the completeness of the Fourier series in the context of compact non-commutative groups and gives a decomposition of the regular representation as a direct sum of irreducibles. The theory of non-compact non-commutative groups is represented by the example of the Heisenberg group in Chapter 12. The regular representation in general decomposes as a direct integral rather than a direct sum. For the Heisenberg group this decomposition is given explicitly. Acknowledgements: I thank Robert Burckel and Alexander Schmidt for their most useful comments on this book. I also thank Moshe Adrian, Mark Pavey, Jose Carlos Santos, and Masamichi Takesaki for pointing out errors in the first edition. Exeter, June 2004 Anton Deitmar LEITFADEN vii Leitfaden 1 2 3 5 4 6
1100746926
A First Course in Harmonic Analysis
The second part of the book concludes with Plancherel’s theorem in Chapter 8. This theorem is a generalization of the completeness of the Fourier series, as well as of Plancherel’s theorem for the real line. The third part of the book is intended to provide the reader with a first impression of the world of non-commutative harmonic analysis. Chapter 9 introduces methods that are used in the analysis of matrix groups, such as the theory of the exponential series and Lie algebras. These methods are then applied in Chapter 10 to arrive at a clas-—cation of the representations of the group SU(2). In Chapter 11 we give the Peter-Weyl theorem, which generalizes the completeness of the Fourier series in the context of compact non-commutative groups and gives a decomposition of the regular representation as a direct sum of irreducibles. The theory of non-compact non-commutative groups is represented by the example of the Heisenberg group in Chapter 12. The regular representation in general decomposes as a direct integral rather than a direct sum. For the Heisenberg group this decomposition is given explicitly. Acknowledgements: I thank Robert Burckel and Alexander Schmidt for their most useful comments on this book. I also thank Moshe Adrian, Mark Pavey, Jose Carlos Santos, and Masamichi Takesaki for pointing out errors in the first edition. Exeter, June 2004 Anton Deitmar LEITFADEN vii Leitfaden 1 2 3 5 4 6
79.99 In Stock
A First Course in Harmonic Analysis

A First Course in Harmonic Analysis

by Anton Deitmar
A First Course in Harmonic Analysis

A First Course in Harmonic Analysis

by Anton Deitmar

Paperback(Second Edition 2005)

$79.99 
  • SHIP THIS ITEM
    In stock. Ships in 6-10 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

The second part of the book concludes with Plancherel’s theorem in Chapter 8. This theorem is a generalization of the completeness of the Fourier series, as well as of Plancherel’s theorem for the real line. The third part of the book is intended to provide the reader with a first impression of the world of non-commutative harmonic analysis. Chapter 9 introduces methods that are used in the analysis of matrix groups, such as the theory of the exponential series and Lie algebras. These methods are then applied in Chapter 10 to arrive at a clas-—cation of the representations of the group SU(2). In Chapter 11 we give the Peter-Weyl theorem, which generalizes the completeness of the Fourier series in the context of compact non-commutative groups and gives a decomposition of the regular representation as a direct sum of irreducibles. The theory of non-compact non-commutative groups is represented by the example of the Heisenberg group in Chapter 12. The regular representation in general decomposes as a direct integral rather than a direct sum. For the Heisenberg group this decomposition is given explicitly. Acknowledgements: I thank Robert Burckel and Alexander Schmidt for their most useful comments on this book. I also thank Moshe Adrian, Mark Pavey, Jose Carlos Santos, and Masamichi Takesaki for pointing out errors in the first edition. Exeter, June 2004 Anton Deitmar LEITFADEN vii Leitfaden 1 2 3 5 4 6

Product Details

ISBN-13: 9780387228372
Publisher: Springer New York
Publication date: 03/09/2005
Series: Universitext
Edition description: Second Edition 2005
Pages: 192
Product dimensions: 6.10(w) x 9.25(h) x 0.02(d)

About the Author

Professor Deitmar holds a Chair in Pure Mathematics at the University of Exeter, U.K. He is a former Heisenberg fellow and was awarded the main prize of the Japanese Association of Mathematical Sciences in 1998. In his leisure time he enjoys hiking in the mountains and practicing Aikido.

Table of Contents

Fourier Analysis.- Fourier Series.- Hilbert Spaces.- The Fourier Transform.- Distributions.- LCA Groups.- Finite Abelian Groups.- LCA Groups.- The Dual Group.- Plancherel Theorem.- Noncommutative Groups.- Matrix Groups.- The Representations of SU(2).- The Peter-Weyl Theorem.- The Heisenberg Group.
From the B&N Reads Blog

Customer Reviews