A Multiple-Testing Approach to the Multivariate Behrens-Fisher Problem: with Simulations and Examples in SAS®
​​ ​    In statistics, the Behrens–Fisher problem is the problem of interval estimation and hypothesis testing concerning the difference between the means of two normally distributed populations when the variances of the two populations are not assumed to be equal, based on two independent samples. In his 1935 paper, Fisher outlined an  approach to the Behrens-Fisher problem.  Since high-speed computers were not available in Fisher’s time, this approach was not implementable and was soon forgotten. Fortunately, now that high-speed computers are available, this approach can easily be implemented using just a desktop or a laptop computer. Furthermore, Fisher’s approach was proposed for univariate samples. But this approach can also be generalized to the multivariate case.      In this monograph, we present the solution to the afore-mentioned multivariate generalization of the Behrens-Fisher problem.  We start out by presenting  a test of multivariate normality, proceed to test(s) of equality of covariance matrices, and end with our solution to the multivariate Behrens-Fisher problem. All methods proposed in this monograph will be include both the randomly-incomplete-data case as well as the complete-data case. Moreover, all methods considered in this monograph will be tested using both simulations and examples. ​
1140677463
A Multiple-Testing Approach to the Multivariate Behrens-Fisher Problem: with Simulations and Examples in SAS®
​​ ​    In statistics, the Behrens–Fisher problem is the problem of interval estimation and hypothesis testing concerning the difference between the means of two normally distributed populations when the variances of the two populations are not assumed to be equal, based on two independent samples. In his 1935 paper, Fisher outlined an  approach to the Behrens-Fisher problem.  Since high-speed computers were not available in Fisher’s time, this approach was not implementable and was soon forgotten. Fortunately, now that high-speed computers are available, this approach can easily be implemented using just a desktop or a laptop computer. Furthermore, Fisher’s approach was proposed for univariate samples. But this approach can also be generalized to the multivariate case.      In this monograph, we present the solution to the afore-mentioned multivariate generalization of the Behrens-Fisher problem.  We start out by presenting  a test of multivariate normality, proceed to test(s) of equality of covariance matrices, and end with our solution to the multivariate Behrens-Fisher problem. All methods proposed in this monograph will be include both the randomly-incomplete-data case as well as the complete-data case. Moreover, all methods considered in this monograph will be tested using both simulations and examples. ​
34.99 In Stock
A Multiple-Testing Approach to the Multivariate Behrens-Fisher Problem: with Simulations and Examples in SAS®

A Multiple-Testing Approach to the Multivariate Behrens-Fisher Problem: with Simulations and Examples in SAS®

by Tejas Desai
A Multiple-Testing Approach to the Multivariate Behrens-Fisher Problem: with Simulations and Examples in SAS®

A Multiple-Testing Approach to the Multivariate Behrens-Fisher Problem: with Simulations and Examples in SAS®

by Tejas Desai

eBook2013 (2013)

$34.99 

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers


Overview

​​ ​    In statistics, the Behrens–Fisher problem is the problem of interval estimation and hypothesis testing concerning the difference between the means of two normally distributed populations when the variances of the two populations are not assumed to be equal, based on two independent samples. In his 1935 paper, Fisher outlined an  approach to the Behrens-Fisher problem.  Since high-speed computers were not available in Fisher’s time, this approach was not implementable and was soon forgotten. Fortunately, now that high-speed computers are available, this approach can easily be implemented using just a desktop or a laptop computer. Furthermore, Fisher’s approach was proposed for univariate samples. But this approach can also be generalized to the multivariate case.      In this monograph, we present the solution to the afore-mentioned multivariate generalization of the Behrens-Fisher problem.  We start out by presenting  a test of multivariate normality, proceed to test(s) of equality of covariance matrices, and end with our solution to the multivariate Behrens-Fisher problem. All methods proposed in this monograph will be include both the randomly-incomplete-data case as well as the complete-data case. Moreover, all methods considered in this monograph will be tested using both simulations and examples. ​

Product Details

ISBN-13: 9781461464433
Publisher: Springer-Verlag New York, LLC
Publication date: 02/26/2013
Series: SpringerBriefs in Statistics
Sold by: Barnes & Noble
Format: eBook
Pages: 55
File size: 2 MB

About the Author

Tejas A. Desai is Assistant Professor at The Adani Institute of Infrastructure Management

Table of Contents

Introduction.- On Testing for Multivariate Normality.- On Testing Equality of Covariance Matrices.- On Heteroscedastic MANOVA.- References.
From the B&N Reads Blog

Customer Reviews