A Primer of Real Analytic Functions
It is a pleasure and a privilege to write this new edition of A Primer 0/ Real Ana­ lytic Functions. The theory of real analytic functions is the wellspring of mathe­ matical analysis. It is remarkable that this is the first book on the subject, and we want to keep it up to date and as correct as possible. With these thoughts in mind, we have utilized helpful remarks and criticisms from many readers and have thereby made numerous emendations. We have also added material. There is a now a treatment of the Weierstrass preparation theorem, a new argument to establish Hensel's lemma and Puiseux's theorem, a new treatment of Faa di Bruno's forrnula, a thorough discussion of topologies on spaces of real analytic functions, and a second independent argument for the implicit func­ tion theorem. We trust that these new topics will make the book more complete, and hence a more useful reference. It is a pleasure to thank our editor, Ann Kostant of Birkhäuser Boston, for mak­ ing the publishing process as smooth and trouble-free as possible. We are grateful for useful communications from the readers of our first edition, and we look for­ ward to further constructive feedback.
1117378493
A Primer of Real Analytic Functions
It is a pleasure and a privilege to write this new edition of A Primer 0/ Real Ana­ lytic Functions. The theory of real analytic functions is the wellspring of mathe­ matical analysis. It is remarkable that this is the first book on the subject, and we want to keep it up to date and as correct as possible. With these thoughts in mind, we have utilized helpful remarks and criticisms from many readers and have thereby made numerous emendations. We have also added material. There is a now a treatment of the Weierstrass preparation theorem, a new argument to establish Hensel's lemma and Puiseux's theorem, a new treatment of Faa di Bruno's forrnula, a thorough discussion of topologies on spaces of real analytic functions, and a second independent argument for the implicit func­ tion theorem. We trust that these new topics will make the book more complete, and hence a more useful reference. It is a pleasure to thank our editor, Ann Kostant of Birkhäuser Boston, for mak­ ing the publishing process as smooth and trouble-free as possible. We are grateful for useful communications from the readers of our first edition, and we look for­ ward to further constructive feedback.
99.99 In Stock
A Primer of Real Analytic Functions

A Primer of Real Analytic Functions

A Primer of Real Analytic Functions

A Primer of Real Analytic Functions

Paperback(Second Edition 2002)

$99.99 
  • SHIP THIS ITEM
    In stock. Ships in 6-10 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

It is a pleasure and a privilege to write this new edition of A Primer 0/ Real Ana­ lytic Functions. The theory of real analytic functions is the wellspring of mathe­ matical analysis. It is remarkable that this is the first book on the subject, and we want to keep it up to date and as correct as possible. With these thoughts in mind, we have utilized helpful remarks and criticisms from many readers and have thereby made numerous emendations. We have also added material. There is a now a treatment of the Weierstrass preparation theorem, a new argument to establish Hensel's lemma and Puiseux's theorem, a new treatment of Faa di Bruno's forrnula, a thorough discussion of topologies on spaces of real analytic functions, and a second independent argument for the implicit func­ tion theorem. We trust that these new topics will make the book more complete, and hence a more useful reference. It is a pleasure to thank our editor, Ann Kostant of Birkhäuser Boston, for mak­ ing the publishing process as smooth and trouble-free as possible. We are grateful for useful communications from the readers of our first edition, and we look for­ ward to further constructive feedback.

Product Details

ISBN-13: 9781461264125
Publisher: Birkhäuser Boston
Publication date: 09/07/2012
Series: Birkhäuser Advanced Texts Basler Lehrbücher
Edition description: Second Edition 2002
Pages: 209
Product dimensions: 6.10(w) x 9.25(h) x 0.02(d)

Table of Contents

1 Elementary Properties.- 1.1 Basic Properties of Power Series.- 1.2 Analytic Continuation.- 1.3 The Formula of Faà di Bruno.- 1.4 Composition of Real Analytic Functions.- 1.5 Inverse Functions.- 2 Multivariable Calculus of Real Analytic Functions.- 2.1 Power Series in Several Variables.- 2.2 Real Analytic Functions of Several Variables.- 2.3 The Implicit function Theorem.- 2.4 A Special Case of the Cauchy-Kowalewsky Theorem.- 2.5 The Inverse function Theorem.- 2.6 Topologies on the Space of Real Analytic Functions.- 2.7 Real Analytic Submanifolds.- 2.8 The General Cauchy-Kowalewsky Theorem.- 3 Classical Topics.- 3.0 Introductory Remarks.- 3.1 The Theorem ofPringsheim and Boas.- 3.2 Besicovitch’s Theorem.- 3.3 Whitney’s Extension and Approximation Theorems.- 3.4 The Theorem of S. Bernstein.- 4 Some Questions of Hard Analysis.- 4.1 Quasi-analytic and Gevrey Classes.- 4.2 Puiseux Series.- 4.3 Separate Real Analyticity.- 5 Results Motivated by Partial Differential Equations.- 5.1 Division of Distributions I.- 5.2 Division of Distributions II.- 5.3 The FBI Transform.- 5.4 The Paley-Wiener Theorem.- 6 Topics in Geometry.- 6.1 The Weierstrass Preparation Theorem.- 6.2 Resolution of Singularities.- 6.3 Lojasiewicz’s Structure Theorem for Real Analytic Varieties.- 6.4 The Embedding of Real Analytic Manifolds.- 6.5 Semianalytic and Subanalytic Sets.- 6.5.1 Basic Definitions.
From the B&N Reads Blog

Customer Reviews