A Tour of Data Science: Learn R and Python in Parallel

A Tour of Data Science: Learn R and Python in Parallel covers the fundamentals of data science, including programming, statistics, optimization, and machine learning in a single short book. It does not cover everything, but rather, teaches the key concepts and topics in Data Science. It also covers two of the most popular programming languages used in Data Science, R and Python, in one source.

Key features:

  • Allows you to learn R and Python in parallel
  • Cover statistics, programming, optimization and predictive modelling, and the popular data manipulation tools – data.table and pandas
  • Provides a concise and accessible presentation
  • Includes machine learning algorithms implemented from scratch, linear regression, lasso, ridge, logistic regression, gradient boosting trees, etc.

Appealing to data scientists, statisticians, quantitative analysts, and others who want to learn programming with R and Python from a data science perspective.

1137074411
A Tour of Data Science: Learn R and Python in Parallel

A Tour of Data Science: Learn R and Python in Parallel covers the fundamentals of data science, including programming, statistics, optimization, and machine learning in a single short book. It does not cover everything, but rather, teaches the key concepts and topics in Data Science. It also covers two of the most popular programming languages used in Data Science, R and Python, in one source.

Key features:

  • Allows you to learn R and Python in parallel
  • Cover statistics, programming, optimization and predictive modelling, and the popular data manipulation tools – data.table and pandas
  • Provides a concise and accessible presentation
  • Includes machine learning algorithms implemented from scratch, linear regression, lasso, ridge, logistic regression, gradient boosting trees, etc.

Appealing to data scientists, statisticians, quantitative analysts, and others who want to learn programming with R and Python from a data science perspective.

66.99 In Stock
A Tour of Data Science: Learn R and Python in Parallel

A Tour of Data Science: Learn R and Python in Parallel

by Nailong Zhang
A Tour of Data Science: Learn R and Python in Parallel

A Tour of Data Science: Learn R and Python in Parallel

by Nailong Zhang

eBook

$66.99 

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers


Overview

A Tour of Data Science: Learn R and Python in Parallel covers the fundamentals of data science, including programming, statistics, optimization, and machine learning in a single short book. It does not cover everything, but rather, teaches the key concepts and topics in Data Science. It also covers two of the most popular programming languages used in Data Science, R and Python, in one source.

Key features:

  • Allows you to learn R and Python in parallel
  • Cover statistics, programming, optimization and predictive modelling, and the popular data manipulation tools – data.table and pandas
  • Provides a concise and accessible presentation
  • Includes machine learning algorithms implemented from scratch, linear regression, lasso, ridge, logistic regression, gradient boosting trees, etc.

Appealing to data scientists, statisticians, quantitative analysts, and others who want to learn programming with R and Python from a data science perspective.


Product Details

ISBN-13: 9781000215274
Publisher: CRC Press
Publication date: 11/11/2020
Series: Chapman & Hall/CRC Data Science Series
Sold by: Barnes & Noble
Format: eBook
Pages: 216
File size: 4 MB

About the Author

Nailong Zhang is lead Data Scientist at Mass Mutual Life Insurance Company.

Table of Contents

Assumptions about the reader’s background
Book overview

Introduction to R/Python Programming
Calculator

Variable and Type
Functions
Control flows
Some built-in data structures
Revisit of variables
Object-oriented programming (OOP) in R/Python
Miscellaneous

More on R/Python Programming
Work with R/Python scripts
Debugging in R/Python
Benchmarking
Vectorization
Embarrassingly parallelism in R/Python
Evaluation strategy
Speed up with C/C++ in R/Python
A first impression of functional programming Miscellaneous

data.table and pandas
SQL
Get started with data.table and pandas
Indexing & selecting data
Add/Remove/Update
Group by
Join

Random Variables, Distributions & Linear Regression
A refresher on distributions
Inversion sampling & rejection sampling
Joint distribution & copula
Fit a distribution
Confidence interval
Hypothesis testing
Basics of linear regression
Ridge regression

Optimization in Practice
Convexity
Gradient descent
Root-finding
General purpose minimization tools in R/Python
Linear programming
Miscellaneous

Machine Learning - A gentle introduction
Supervised learning
Gradient boosting machine
Unsupervised learning
Reinforcement learning
Deep Q-Networks
Computational differentiation
Miscellaneous

From the B&N Reads Blog

Customer Reviews