A Unified Approach to the Finite Element Method and Error Analysis Procedures / Edition 1

A Unified Approach to the Finite Element Method and Error Analysis Procedures / Edition 1

by Julian A. T. Dow
ISBN-10:
0122214404
ISBN-13:
9780122214400
Pub. Date:
11/02/1998
Publisher:
Elsevier Science
ISBN-10:
0122214404
ISBN-13:
9780122214400
Pub. Date:
11/02/1998
Publisher:
Elsevier Science
A Unified Approach to the Finite Element Method and Error Analysis Procedures / Edition 1

A Unified Approach to the Finite Element Method and Error Analysis Procedures / Edition 1

by Julian A. T. Dow
$160.0 Current price is , Original price is $160.0. You
$160.00 
  • SHIP THIS ITEM
    Qualifies for Free Shipping
  • PICK UP IN STORE
    Check Availability at Nearby Stores

Overview

A Unified Approach to the Finite Element Method and Error Analysis Procedures provides an in-depth background to better understanding of finite element results and techniques for improving accuracy of finite element methods. Thus, the reader is able to identify and eliminate errors contained in finite element models. Three different error analysis techniques are systematically developed from a common theoretical foundation: 1) modeling erros in individual elements; 2) discretization errors in the overall model; 3) point-wise errors in the final stress or strain results.Thoroughly class tested with undergraduate and graduate students.

A Unified Approach to the Finite Element Method and Error Analysis Procedures is sure to become an essential resource for students as well as practicing engineers and researchers.


Product Details

ISBN-13: 9780122214400
Publisher: Elsevier Science
Publication date: 11/02/1998
Pages: 533
Product dimensions: 7.00(w) x 10.00(h) x (d)

About the Author

John O. Dow is an Associate Professor at the University of Colorado at Boulder in the Department of Civil, Environmental and Architectural Engineering. He is a specialist in structural mechanics with extensive industrial experience in automotive engineering, aerospace engineering, and civil engineering applications. Professor Dow is an active consultant in the industry of structural mechanics. His graduate students are employed as structural software engineers, bridge designers, offshore structures designers, and aerospace designers and analysts.

Table of Contents

General Introduction. Problem Definition and Development: Introduction. Principle of Minimum Potential Energy. Elements of the Calculus of Variations. Derivation of the Plane Stress Problem. Rayleigh-Ritz Variational Solution Technique. Physically Interpretable Displacement Polynomials: Strain Gradient Notation: Introduction. Strain Gradient Notation. Strain Gradient Representation of Discrete Structures. Strain Transformations. A-Priori Error Analysis Procedures: Introduction. The Development of Strain Gradient Based Finite Elements. Four Node Quadrilateral Element. Six Node Linear Strain Element. Eight and Nine Node Elements. Shear Locking and Aspect Ratio Stiffening. The Strain Gradient Reformation of the Finite Differences Method: Introduction. Elements of the Finite Difference Method. Finite Difference Boundary Condition Models. Extensions to the Finite Difference Method. A-Posteriori Error Analysis Procedures: Introduction. The Zienkiewicz/Zhu Error Estimation Procedure. Error Estimation Based on Finite Difference Smoothing. Point-Wise Error Estimates. Super-Convergence of the Augmented Finite Element Results. Adaptive Refinement of Finite Difference Models. Subject Index.
From the B&N Reads Blog

Customer Reviews