Abstract Harmonic Analysis of Continuous Wavelet Transforms
This volume contains a systematic discussion of wavelet-type inversion formulae based on group representations, and their close connection to the Plancherel formula for locally compact groups. The connection is demonstrated by the discussion of a toy example, and then employed for two purposes: Mathematically, it serves as a powerful tool, yielding existence results and criteria for inversion formulae which generalize many of the known results. Moreover, the connection provides the starting point for a – reasonably self-contained – exposition of Plancherel theory. Therefore, the volume can also be read as a problem-driven introduction to the Plancherel formula.

1128809300
Abstract Harmonic Analysis of Continuous Wavelet Transforms
This volume contains a systematic discussion of wavelet-type inversion formulae based on group representations, and their close connection to the Plancherel formula for locally compact groups. The connection is demonstrated by the discussion of a toy example, and then employed for two purposes: Mathematically, it serves as a powerful tool, yielding existence results and criteria for inversion formulae which generalize many of the known results. Moreover, the connection provides the starting point for a – reasonably self-contained – exposition of Plancherel theory. Therefore, the volume can also be read as a problem-driven introduction to the Plancherel formula.

49.99 In Stock
Abstract Harmonic Analysis of Continuous Wavelet Transforms

Abstract Harmonic Analysis of Continuous Wavelet Transforms

by Hartmut Führ
Abstract Harmonic Analysis of Continuous Wavelet Transforms

Abstract Harmonic Analysis of Continuous Wavelet Transforms

by Hartmut Führ

Paperback(2005)

$49.99 
  • SHIP THIS ITEM
    In stock. Ships in 6-10 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

This volume contains a systematic discussion of wavelet-type inversion formulae based on group representations, and their close connection to the Plancherel formula for locally compact groups. The connection is demonstrated by the discussion of a toy example, and then employed for two purposes: Mathematically, it serves as a powerful tool, yielding existence results and criteria for inversion formulae which generalize many of the known results. Moreover, the connection provides the starting point for a – reasonably self-contained – exposition of Plancherel theory. Therefore, the volume can also be read as a problem-driven introduction to the Plancherel formula.


Product Details

ISBN-13: 9783540242598
Publisher: Springer Berlin Heidelberg
Publication date: 04/06/2005
Series: Lecture Notes in Mathematics , #1863
Edition description: 2005
Pages: 193
Product dimensions: 6.10(w) x 9.25(h) x 0.02(d)

Table of Contents

Introduction.- Wavelet Transforms and Group Representations.- The Plancherel Transform for Locally Compact Groups.- Plancherel Inversion and Wavelet Transforms.- Admissible Vectors for Group Extension.- Sampling Theorems for the Heisenberg Group.- References.- Index.
From the B&N Reads Blog

Customer Reviews