Activities for Teaching Science as Inquiry / Edition 7

Paperback (Print)
Rent
Rent from BN.com
$19.69
(Save 79%)
Est. Return Date: 09/08/2014
Used and New from Other Sellers
Used and New from Other Sellers
from $13.96
Usually ships in 1-2 business days
(Save 85%)
Other sellers (Paperback)
  • All (12) from $13.96   
  • New (5) from $86.20   
  • Used (7) from $13.96   

Overview


Inquiry-based teaching is central to the National Science Education Standards (NSES) and Benchmarks for Scientific Literacy, and research has proven that an inquiry approach to science teaching motivates and engages every type of student. Activities for Teaching Science as Inquiry follows a clear, easy-to-follow approach to inquiry, using the 5-E Learning Cycle model of instruction (Engage, Explore, Explain, Elaborate, Evaluate). Derived from the leading book on the market, Teaching Science as Inquiry, it offers an abundance of practical ways to take inquiry science into your classroom!

A few of the highlights of this new seventh edition are:

  • Each activity is keyed to the NSES Standards, further developing new and experienced teachers' fluency with a standards-based science classroom.
  • Activities adhere even more closely to the 5-E instructional model. The framework provides a clear, manageable way to engage students in inquiry activities.
  • Clear activity outlines, including needed safety precautions, meaningfully prepare new and experienced teachers for integrating inquiry activities into their science classroom.
Read More Show Less

Product Details

  • ISBN-13: 9780136156802
  • Publisher: Pearson
  • Publication date: 4/18/2008
  • Series: Pearson Custom Education Series
  • Edition description: New Edition
  • Edition number: 7
  • Pages: 312
  • Sales rank: 944,932
  • Product dimensions: 7.98 (w) x 10.12 (h) x 0.45 (d)

Read an Excerpt

PREFACE:

Preface

THE FIFTH EDITION of Activities for Teaching Science as Inquiry introduces prospective and experienced teachers to inquiry activities necessary to teach science in contemporary ways. Inquiry is both a way to teach and a way for students to investigate the world. Doing inquiry means asking simple but thoughtful questions about the world and engaging students to answer them. Inquiry incorporates the use of hands-on and process-oriented activities for the benefit of knowledge construction. Inquiry encourages students to connect their prior knowledge to observations and to use their observations as evidence to increase personal scientific knowledge. In this instructional environment, teachers act as facilitators of learning rather than "bankers" who have stored knowledge that they transfer into students' heads.

New to the Fifth Edition

Prodigious efforts of the American Association for the Advancement of Science (AAAS), the National Research Council, and other groups in the 1990s have provided a coherent vision and a research-based framework for a new era of science education. As a result, the National Science Education Standards (NSES) were created to coordinate the goals and objectives for science instruction. The National Science Education Standards provide directives not only for the setting up of district-wide science programs but also for the science concepts that are to be covered in inquiry activities at each grade level. These standards are not rigid but rather provide you, and the school system in which you teach, concrete guidelines for exposing students to science experiences throughout theirschooling. As you become familiar with the National Science Education Standards you will be able to incorporate the activities provided in this text into your lesson plans and curricular goals for your school science program.

Significant changes within this edition include:

  • Practical suggestions for building learning communities include guidelines for the development of cooperative group strategies. Members of cooperative groups encourage the exchange of ideas among students during inquiry experiences.
  • Instructional models for continuing professional development are illustrated in Video Case Studies. Nine elementary and middle school teachers reflect on their growth as science teachers as they work with science mentors and explore how they could teach science better.
  • The Companion Website identifies how to utilize technology while learning how to teach science effectively.

The Video Case Studies

Your professor will have copies of several exemplary Video Case Studies. These cases illustrate the professional development of classroom teachers in their search to become more effective at teaching science. When reviewing the Video Case Studies, it is important to explain how to get the most out of using them to advance your own learning.

The Value of Video Cases. In their practical guide Designing Professional Development for Teachers of Science and Mathematics, Susan Loucks-Horsley, Peter Hewson, Nancy Love, and Katherine Stiles (1998) identified the case study method as one of the most important strategies for professional development. The process of observing and reflecting on teachers' actions, and on students' learning and thinking, can lead to changes in the knowledge, beliefs, attitudes, and ultimately the practice of pre-service and in-service teachers. You and your colleagues can use classroom discussions about the Video Case Studies to:

  • extend and apply knowledge presented in the chapters,
  • formulate questions and ideas,
  • learn from one another,
  • become aware of alternative perspectives and strategies,
  • reflect on real problems faced by practicing teachers, and
  • increase your science knowledge, as more than 30 science topics are taught in the case studies.

The Annenberg Case Studies. The Video Case Studies are available free to your professor, and are part of the professional library developed by Annenberg. In the cases chosen to accompany your study of this text, ten video cases depict nine different teachers in three videos in Annenberg's Case Studies in Science Education series. Each video case is divided into three segments: An Introduction to the Case, Trying New Ideas, and Reflecting and Building on Change. The three parts of each Video Case Study enable you to look in on a teacher and his or her students at intervals throughout the school year. From one segment to the next, in each case you will see how the teacher undergoes professional changes in approaching science teaching. The changes reflect the real life experiences of teachers who see a need to improve the way they teach, meet with a teaching mentor to gather ideas, and implement ways to improve their science teaching practice. As a result of this work you will witness not only a teacher's growing confidence and capability in science teaching but also a growing involvement of students in their own science learning.

For optimum benefit while watching the video segments, you as a participant have an opportunity to "share a commitment to improve your teaching practice, a willingness to share and critically discuss aspects of practice and curiosity about important assumptions that underlie teaching and learning" (Loucks-Horsley et al., 1998, pp. 108-109). A knowledgeable and experienced facilitator can enhance the case discussions. The role of the facilitator is to help participants

  • understand the situation and issues in the case,
  • focus on the thinking of students in the video classrooms,
  • examine the approach taken by the teacher,
  • reflect on the theoretical foundation for the teachers' actions, and
  • consider alternative actions and their consequences (Loucks-Horsley et al., 1998).

Although these Video Case Studies are not intended to replace actual classroom visits, they can provide a more focused picture of specific aspects of teaching and learning than might be obtained from real-time observations of classes.

The Companion Website

A Companion Website designed for student and professor use accompanies this text. The Syllabus Manager allows professors the opportunity to place the class syllabus online. This enables students to also see a course calendar, chapter assignments and course changes as they are posted. In addition, content information is organized as chapter-by-chapter features and provides you with study guide questions and self-assessment tests so you can check your own understanding of teaching science in an ongoing way. Links on the website navigation bar can transport you to

  • focus questions you can use as a study guide,
  • online quizzes that are self-pacing and self-evaluating, with scores e-mailed to professors if desired,
  • Web destinations and links to wonderful science resources on the Internet, and
  • a Message Board where you can engage in meaningful discourse about science teaching and learning issues with others taking the course.

Unique to this Companion Website are virtual classroom experiences. Although they are linked more directly to the ninth edition of the core text, Teaching Science as Inquiry, the video essays depicted in certain Website chapters will let you see how well you understand the components of good science teaching. Videostreaming on the video essays illustrates the various teaching strategies of classroom teachers teaching properties of air in grade 1, balance beams in grade 4, and pendulums in grade 8. As you begin to understand the components of good science instruction, test yourself on the strategies that exemplify effective science teaching. You should also see opportunities for improving each science lesson. As you become more familiar with the rudiments of effective science instruction, you 'nay choose to revisit these virtual sites and reassess your understanding of science teaching and learning.

Acknowledgments

To be meaningful, educational visions have to be practically implemented in teacher education and staff development programs, and most important, in our nation's classrooms. Our goal in writing and revising this textbook has been to present the new vision of science education and provide you with specific help, guidelines, and examples as you prepare to teach science in a new millennium.

The reviewers for the third edition of this text, as well as those who read and commented on the chapters in the fourth edition, have been very perceptive and insightful and have offered many comments and suggestions that, hopefully, have led to significant improvements. We acknowledge and express our gratitude to the following reviewers: Carol Brewer, The University of Montana; Rosemarie Kolstad, East Texas State University; Mark R. Malone, The University of Colorado; Richard H. Moyer, The University of MichiganDearborn; Michael Odell, The University of Idaho; William A. Rieck, The University of Southwestern Louisiana; Joseph D. Sharpe, Tennessee Technological University; Leone E. Snyder, Northwestern College; M. Dale Streigle, Iowa State University; and Dana L. Zeidler, The University of South Florida-Tampa.

We thank editor Linda Ashe Montgomery at Merrill Education who has provided substantive, as well as editorial assistance throughout the writing and revision efforts. She has a great sensitivity to education issues, not only in science but in other specialized fields as well. We wish to acknowledge her contributions to this text and convey our appreciation to her.

We also wish to thank Kathy Deselle, copyeditor; Kate Nichols, designer; Mary Harlan, production editor; and Betsy Keefer, project coordinator.

Read More Show Less

Table of Contents

Section I: Teaching Inquiry Science Activities

When Scientists and Students Inquire

Phases of Inquiry Instruction: The 5-E Model

Characteristics of Inquiry Classrooms

About the Science Activities in This Book

Using the Science Activities in This Book

Getting Started with Inquiry Science

References

Section II: Physical Sciences Activities

Properties of Matter

Motion and Forces

Sound

Temperature and Heat

Light

Magnetism

Electricity

Section III: Life Science Activities

Characteristics of Organisms

Organisms and Their Environments

Structures and Functions of Human Systems

Section IV: Earth and Space Science Activities

Rocks and Minerals

Atmosphere, Weather, and Climate of the Earth

The Earth's Oceans

Viewing the Sky From Earth

APPENDICES

Appendix A: Safety Suggestions for Elementary and Middle School Inquiry Activities

Appendix B: Measuring Tools, Measuring Skills

Appendix C: Selected Sources of Science Supplies, Models, Living Things, Kits, and Software

Appendix D: Selected Science Education Periodicals for Teachers and Children

Appendix E: Professional Societies for Teachers, Supervisors, and Science Educators

Appenidx F: Contemporary Elementary Science Projects and Programs

Read More Show Less

Preface

Preface

THE FIFTH EDITION of Activities for Teaching Science as Inquiry introduces prospective and experienced teachers to inquiry activities necessary to teach science in contemporary ways. Inquiry is both a way to teach and a way for students to investigate the world. Doing inquiry means asking simple but thoughtful questions about the world and engaging students to answer them. Inquiry incorporates the use of hands-on and process-oriented activities for the benefit of knowledge construction. Inquiry encourages students to connect their prior knowledge to observations and to use their observations as evidence to increase personal scientific knowledge. In this instructional environment, teachers act as facilitators of learning rather than "bankers" who have stored knowledge that they transfer into students' heads.

New to the Fifth Edition

Prodigious efforts of the American Association for the Advancement of Science (AAAS), the National Research Council, and other groups in the 1990s have provided a coherent vision and a research-based framework for a new era of science education. As a result, the National Science Education Standards (NSES) were created to coordinate the goals and objectives for science instruction. The National Science Education Standards provide directives not only for the setting up of district-wide science programs but also for the science concepts that are to be covered in inquiry activities at each grade level. These standards are not rigid but rather provide you, and the school system in which you teach, concrete guidelines for exposing students to science experiences throughout theirschooling. As you become familiar with the National Science Education Standards you will be able to incorporate the activities provided in this text into your lesson plans and curricular goals for your school science program.

Significant changes within this edition include:

  • Practical suggestions for building learning communities include guidelines for the development of cooperative group strategies. Members of cooperative groups encourage the exchange of ideas among students during inquiry experiences.
  • Instructional models for continuing professional development are illustrated in Video Case Studies. Nine elementary and middle school teachers reflect on their growth as science teachers as they work with science mentors and explore how they could teach science better.
  • The Companion Website identifies how to utilize technology while learning how to teach science effectively.

The Video Case Studies

Your professor will have copies of several exemplary Video Case Studies. These cases illustrate the professional development of classroom teachers in their search to become more effective at teaching science. When reviewing the Video Case Studies, it is important to explain how to get the most out of using them to advance your own learning.

The Value of Video Cases. In their practical guide Designing Professional Development for Teachers of Science and Mathematics, Susan Loucks-Horsley, Peter Hewson, Nancy Love, and Katherine Stiles (1998) identified the case study method as one of the most important strategies for professional development. The process of observing and reflecting on teachers' actions, and on students' learning and thinking, can lead to changes in the knowledge, beliefs, attitudes, and ultimately the practice of pre-service and in-service teachers. You and your colleagues can use classroom discussions about the Video Case Studies to:

  • extend and apply knowledge presented in the chapters,
  • formulate questions and ideas,
  • learn from one another,
  • become aware of alternative perspectives and strategies,
  • reflect on real problems faced by practicing teachers, and
  • increase your science knowledge, as more than 30 science topics are taught in the case studies.

The Annenberg Case Studies. The Video Case Studies are available free to your professor, and are part of the professional library developed by Annenberg. In the cases chosen to accompany your study of this text, ten video cases depict nine different teachers in three videos in Annenberg's Case Studies in Science Education series. Each video case is divided into three segments: An Introduction to the Case, Trying New Ideas, and Reflecting and Building on Change. The three parts of each Video Case Study enable you to look in on a teacher and his or her students at intervals throughout the school year. From one segment to the next, in each case you will see how the teacher undergoes professional changes in approaching science teaching. The changes reflect the real life experiences of teachers who see a need to improve the way they teach, meet with a teaching mentor to gather ideas, and implement ways to improve their science teaching practice. As a result of this work you will witness not only a teacher's growing confidence and capability in science teaching but also a growing involvement of students in their own science learning.

For optimum benefit while watching the video segments, you as a participant have an opportunity to "share a commitment to improve your teaching practice, a willingness to share and critically discuss aspects of practice and curiosity about important assumptions that underlie teaching and learning" (Loucks-Horsley et al., 1998, pp. 108-109). A knowledgeable and experienced facilitator can enhance the case discussions. The role of the facilitator is to help participants

  • understand the situation and issues in the case,
  • focus on the thinking of students in the video classrooms,
  • examine the approach taken by the teacher,
  • reflect on the theoretical foundation for the teachers' actions, and
  • consider alternative actions and their consequences (Loucks-Horsley et al., 1998).

Although these Video Case Studies are not intended to replace actual classroom visits, they can provide a more focused picture of specific aspects of teaching and learning than might be obtained from real-time observations of classes.

The Companion Website

A Companion Website designed for student and professor use accompanies this text. The Syllabus Manager allows professors the opportunity to place the class syllabus online. This enables students to also see a course calendar, chapter assignments and course changes as they are posted. In addition, content information is organized as chapter-by-chapter features and provides you with study guide questions and self-assessment tests so you can check your own understanding of teaching science in an ongoing way. Links on the website navigation bar can transport you to

  • focus questions you can use as a study guide,
  • online quizzes that are self-pacing and self-evaluating, with scores e-mailed to professors if desired,
  • Web destinations and links to wonderful science resources on the Internet, and
  • a Message Board where you can engage in meaningful discourse about science teaching and learning issues with others taking the course.

Unique to this Companion Website are virtual classroom experiences. Although they are linked more directly to the ninth edition of the core text, Teaching Science as Inquiry, the video essays depicted in certain Website chapters will let you see how well you understand the components of good science teaching. Videostreaming on the video essays illustrates the various teaching strategies of classroom teachers teaching properties of air in grade 1, balance beams in grade 4, and pendulums in grade 8. As you begin to understand the components of good science instruction, test yourself on the strategies that exemplify effective science teaching. You should also see opportunities for improving each science lesson. As you become more familiar with the rudiments of effective science instruction, you 'nay choose to revisit these virtual sites and reassess your understanding of science teaching and learning.

Acknowledgments

To be meaningful, educational visions have to be practically implemented in teacher education and staff development programs, and most important, in our nation's classrooms. Our goal in writing and revising this textbook has been to present the new vision of science education and provide you with specific help, guidelines, and examples as you prepare to teach science in a new millennium.

The reviewers for the third edition of this text, as well as those who read and commented on the chapters in the fourth edition, have been very perceptive and insightful and have offered many comments and suggestions that, hopefully, have led to significant improvements. We acknowledge and express our gratitude to the following reviewers: Carol Brewer, The University of Montana; Rosemarie Kolstad, East Texas State University; Mark R. Malone, The University of Colorado; Richard H. Moyer, The University of MichiganDearborn; Michael Odell, The University of Idaho; William A. Rieck, The University of Southwestern Louisiana; Joseph D. Sharpe, Tennessee Technological University; Leone E. Snyder, Northwestern College; M. Dale Streigle, Iowa State University; and Dana L. Zeidler, The University of South Florida-Tampa.

We thank editor Linda Ashe Montgomery at Merrill Education who has provided substantive, as well as editorial assistance throughout the writing and revision efforts. She has a great sensitivity to education issues, not only in science but in other specialized fields as well. We wish to acknowledge her contributions to this text and convey our appreciation to her.

We also wish to thank Kathy Deselle, copyeditor; Kate Nichols, designer; Mary Harlan, production editor; and Betsy Keefer, project coordinator.

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)