Acute Neuronal Injury: The Role of Excitotoxic Programmed Cell Death Mechanisms / Edition 1

Acute Neuronal Injury: The Role of Excitotoxic Programmed Cell Death Mechanisms / Edition 1

by Denson G. Fujikawa
     
 

This book is the result of a convergence of scientific information regarding mechanisms that produce acute nerve cell death in the brain. Although seemingly disparate, stroke, brain and spinal cord trauma, coma from a low serum glucose concentration (hypoglycemia), and prolonged epileptic seizures have in common the inciting factor of excitotoxicity, the activation

See more details below

Overview

This book is the result of a convergence of scientific information regarding mechanisms that produce acute nerve cell death in the brain. Although seemingly disparate, stroke, brain and spinal cord trauma, coma from a low serum glucose concentration (hypoglycemia), and prolonged epileptic seizures have in common the inciting factor of excitotoxicity, the activation of a specific subtype of glutamate receptor by an elevated extracellular glutamate concentration that results in an excessive influx of calcium into nerve cells. The high calcium concentration in nerve cells activates several enzymes that are responsible for degradation of cytoplasmic proteins and cleavage of nuclear DNA, resulting in nerve cell death. The high calcium concentration also interferes with mihondrial respiration, with the resultant production of free radicals that damage cellular membranes and nuclear DNA. Understanding the biochemical pathways that produce nerve cell death is the first step toward devising an effective neuroprotective strategy, the ultimate goal.

Acute Neuronal Injury will be useful to neuroscientists and general cell biologists interested in cell death. The book will also be helpful to clinically oriented neuroscientists, including neurologists, neurosurgeons and psychiatrists.

About the Editor:

Dr. Denson Fujikawa is an Adjunct Professor of Neurology at the David Geffen School of Medicine at UCLA, a member of the Brain Research Institute at UCLA and a Staff Neurologist at the Department of Veterans Affairs Greater Los Angeles Healthcare System. His interest in mechanisms of nerve cell death in the brain began during a two-year epilepsy research fellowship with Dr. Claude Wasterlain, from 1981 to 1983. He is a Fellow of the American Academy of Neurology and is a member of the American Epilepsy Society, American Neurological Association, International Society for Cerebral Blood Flow and Metabolism, and the Society for Neuroscience.

Read More

Product Details

ISBN-13:
9780387732251
Publisher:
Springer US
Publication date:
10/06/2009
Edition description:
2010
Pages:
306
Product dimensions:
6.30(w) x 9.20(h) x 1.00(d)

Table of Contents

INTRODUCTION: Programmed mechanisms and the clinical spectrum of excitotoxic neuronal death (Denson G. Fujikawa).- PART 1: Caspase-independent programmed cell death: general considerations.- Chapter 1: Caspase-independent cell death mechanisms in simple animal models (Matthias Rieckher and Nektarios Tavernarakis).- Chapter 2: Programmed necrosis: a 'new' cell death outcome for injured adult neurons? (Slavica Krantic and Santos A. Susin).- Chapter 3: Age-dependence of neuronal apoptosis and of caspase activation (Denson G. Fujikawa).- Chapter 4: Excitotoxic programmed cell death involves caspase-independent mechanisms (Ho Chul Kang, Ted M. Dawson and Valina L. Dawson).- PART 2: Focal Cerebral ischemia.- Chapter 5: Apoptosis-inducing factor translocation to nuclei in focal cerebral ischemia (Carsten Culmsee and Nicholas Plesnila).- Chapter 6: The role of poly(ADP-ribose) polymerase-1 (PARP-1) activation in focal cerebral ischemia (Giuseppe Faraco and Alberto Chiarugi).- PART 3: Transient Global Ischemia.- Chapter 7: Transient global cerebral ischemia produces necrotic, not apoptotic neurons (Frederick Colbourne and Roland Auer).- Chapter 8: Apoptosis-inducing factor translocation to nuclei after transient global ischemia (Can Liu, Armando P. Signore, Guodong Cao and Jun Chen).- Chapter 9: Role of µ-calpain I and lysosomal cathepsins in hippocampal neuronal necrosis after transient global ischemia in primates (Anton B. Tonchev and Tetsumori Yamashima).- PART 4: Traumatic central nervous system (CNS) injury.- Chapter 10: Mihondrial damage in traumatic CNS injury (Laurie M. Davis and Patrick G. Sullivan).- Chapter 11: Programmed mechanisms in traumatic CNS injury (Bogdan A. Stoica and Alan I. Faden).- PART 5: Hypoglycemic neuronal death.- Chapter 12: Hypoglycemic neuronal death: morphological considerations (tentative title pending receipt of manuscript; Roland Auer).- Chapter 13:The role of poly(ADP-ribose) polymerase-1 (PARP-1) in hypoglycemic neuronal death (tentative title pending receipt of manuscript; Sang Won Suh and Raymond A. Swanson).- PART 6: Seizure-induced neuronal death.- Chapter 14: p53 activation is necessary in seizure-induced neuronal death (Zhiquin Tan and Steven S. Schreiber).- Chapter 15: DNA damage and repair in the brain: implications for seizure-induced neuronal injury, endangerment, and neuroprotection (Samantha L. Crowe and Alexei D. Kondratyev).- Chapter 16: Activation of caspase-independent programmed pathways in seizure-induced neuronal necrosis (Denson G. Fujikawa).- CONCLUDING REMARKS (Denson G. Fujikawa)

Read More

Customer Reviews

Average Review:

Write a Review

and post it to your social network

     

Most Helpful Customer Reviews

See all customer reviews >