Acute Neuronal Injury: The Role of Excitotoxic Programmed Cell Death Mechanisms / Edition 1

Hardcover (Print)
Buy New
Buy New from BN.com
$208.05
Used and New from Other Sellers
Used and New from Other Sellers
from $132.30
Usually ships in 1-2 business days
(Save 39%)
Other sellers (Hardcover)
  • All (9) from $132.30   
  • New (7) from $132.30   
  • Used (2) from $208.04   

Overview

This book is the result of a convergence of scientific information regarding mechanisms that produce acute nerve cell death in the brain. Although seemingly disparate, stroke, brain and spinal cord trauma, coma from a low serum glucose concentration (hypoglycemia), and prolonged epileptic seizures have in common the inciting factor of excitotoxicity, the activation of a specific subtype of glutamate receptor by an elevated extracellular glutamate concentration that results in an excessive influx of calcium into nerve cells. The high calcium concentration in nerve cells activates several enzymes that are responsible for degradation of cytoplasmic proteins and cleavage of nuclear DNA, resulting in nerve cell death. The high calcium concentration also interferes with mihondrial respiration, with the resultant production of free radicals that damage cellular membranes and nuclear DNA. Understanding the biochemical pathways that produce nerve cell death is the first step toward devising an effective neuroprotective strategy, the ultimate goal.

Acute Neuronal Injury will be useful to neuroscientists and general cell biologists interested in cell death. The book will also be helpful to clinically oriented neuroscientists, including neurologists, neurosurgeons and psychiatrists.

About the Editor:

Dr. Denson Fujikawa is an Adjunct Professor of Neurology at the David Geffen School of Medicine at UCLA, a member of the Brain Research Institute at UCLA and a Staff Neurologist at the Department of Veterans Affairs Greater Los Angeles Healthcare System. His interest in mechanisms of nerve cell death in the brain began during a two-year epilepsy research fellowship with Dr. Claude Wasterlain, from 1981 to 1983. He is a Fellow of the American Academy of Neurology and is a member of the American Epilepsy Society, American Neurological Association, International Society for Cerebral Blood Flow and Metabolism, and the Society for Neuroscience.

Read More Show Less

Product Details

  • ISBN-13: 9780387732251
  • Publisher: Springer US
  • Publication date: 10/6/2009
  • Edition description: 2010
  • Edition number: 1
  • Pages: 306
  • Product dimensions: 6.30 (w) x 9.20 (h) x 1.00 (d)

Meet the Author

Dr. Denson Fujikawa is an Adjunct Professor of Neurology at the David Geffen School of Medicine at UCLA, a member of the Brain Research Institute at UCLA and a Staff Neurologist at the Department of Veterans Affairs Greater Los Angeles Healthcare System. His interest in mechanisms of nerve cell death in the brain began during a two-year epilepsy research fellowship with Dr. Claude Wasterlain, from 1981 to 1983. He is a Fellow of the American Academy of Neurology and is a member of the American Epilepsy Society, American Neurological Association, International Society for Cerebral Blood Flow and Metabolism and the Society for Neuroscience.

Read More Show Less

Table of Contents

INTRODUCTION: Programmed mechanisms and the clinical spectrum of excitotoxic neuronal death (Denson G. Fujikawa).- PART 1: Caspase-independent programmed cell death: general considerations.- Chapter 1: Caspase-independent cell death mechanisms in simple animal models (Matthias Rieckher and Nektarios Tavernarakis).- Chapter 2: Programmed necrosis: a 'new' cell death outcome for injured adult neurons? (Slavica Krantic and Santos A. Susin).- Chapter 3: Age-dependence of neuronal apoptosis and of caspase activation (Denson G. Fujikawa).- Chapter 4: Excitotoxic programmed cell death involves caspase-independent mechanisms (Ho Chul Kang, Ted M. Dawson and Valina L. Dawson).- PART 2: Focal Cerebral ischemia.- Chapter 5: Apoptosis-inducing factor translocation to nuclei in focal cerebral ischemia (Carsten Culmsee and Nicholas Plesnila).- Chapter 6: The role of poly(ADP-ribose) polymerase-1 (PARP-1) activation in focal cerebral ischemia (Giuseppe Faraco and Alberto Chiarugi).- PART 3: Transient Global Ischemia.- Chapter 7: Transient global cerebral ischemia produces necrotic, not apoptotic neurons (Frederick Colbourne and Roland Auer).- Chapter 8: Apoptosis-inducing factor translocation to nuclei after transient global ischemia (Can Liu, Armando P. Signore, Guodong Cao and Jun Chen).- Chapter 9: Role of ยต-calpain I and lysosomal cathepsins in hippocampal neuronal necrosis after transient global ischemia in primates (Anton B. Tonchev and Tetsumori Yamashima).- PART 4: Traumatic central nervous system (CNS) injury.- Chapter 10: Mihondrial damage in traumatic CNS injury (Laurie M. Davis and Patrick G. Sullivan).- Chapter 11: Programmed mechanisms in traumatic CNS injury (Bogdan A. Stoica and Alan I. Faden).- PART 5: Hypoglycemic neuronal death.- Chapter 12: Hypoglycemic neuronal death: morphological considerations (tentative title pending receipt of manuscript; Roland Auer).- Chapter 13:The role of poly(ADP-ribose) polymerase-1 (PARP-1) in hypoglycemic neuronal death (tentative title pending receipt of manuscript; Sang Won Suh and Raymond A. Swanson).- PART 6: Seizure-induced neuronal death.- Chapter 14: p53 activation is necessary in seizure-induced neuronal death (Zhiquin Tan and Steven S. Schreiber).- Chapter 15: DNA damage and repair in the brain: implications for seizure-induced neuronal injury, endangerment, and neuroprotection (Samantha L. Crowe and Alexei D. Kondratyev).- Chapter 16: Activation of caspase-independent programmed pathways in seizure-induced neuronal necrosis (Denson G. Fujikawa).- CONCLUDING REMARKS (Denson G. Fujikawa)

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)