Advanced Data Mining Techniques
The intent of this book is to describe some recent data mining tools that have proven effective in dealing with data sets which often involve unc- tain description or other complexities that cause difficulty for the conv- tional approaches of logistic regression, neural network models, and de- sion trees. Among these traditional algorithms, neural network models often have a relative advantage when data is complex. We will discuss methods with simple examples, review applications, and evaluate relative advantages of several contemporary methods. Book Concept Our intent is to cover the fundamental concepts of data mining, to dem- strate the potential of gathering large sets of data, and analyzing these data sets to gain useful business understanding. We have organized the material into three parts. Part I introduces concepts. Part II contains chapters on a number of different techniques often used in data mining. Part III focuses on business applications of data mining. Not all of these chapters need to be covered, and their sequence could be varied at instructor design. The book will include short vignettes of how specific concepts have been applied in real practice. A series of representative data sets will be generated to demonstrate specific methods and concepts. References to data mining software and sites such as www.kdnuggets.com will be provided. Part I: Introduction Chapter 1 gives an overview of data mining, and provides a description of the data mining process. An overview of useful business applications is provided.
1101633430
Advanced Data Mining Techniques
The intent of this book is to describe some recent data mining tools that have proven effective in dealing with data sets which often involve unc- tain description or other complexities that cause difficulty for the conv- tional approaches of logistic regression, neural network models, and de- sion trees. Among these traditional algorithms, neural network models often have a relative advantage when data is complex. We will discuss methods with simple examples, review applications, and evaluate relative advantages of several contemporary methods. Book Concept Our intent is to cover the fundamental concepts of data mining, to dem- strate the potential of gathering large sets of data, and analyzing these data sets to gain useful business understanding. We have organized the material into three parts. Part I introduces concepts. Part II contains chapters on a number of different techniques often used in data mining. Part III focuses on business applications of data mining. Not all of these chapters need to be covered, and their sequence could be varied at instructor design. The book will include short vignettes of how specific concepts have been applied in real practice. A series of representative data sets will be generated to demonstrate specific methods and concepts. References to data mining software and sites such as www.kdnuggets.com will be provided. Part I: Introduction Chapter 1 gives an overview of data mining, and provides a description of the data mining process. An overview of useful business applications is provided.
109.99 In Stock
Advanced Data Mining Techniques

Advanced Data Mining Techniques

Advanced Data Mining Techniques

Advanced Data Mining Techniques

Paperback(2008)

$109.99 
  • SHIP THIS ITEM
    In stock. Ships in 1-2 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

The intent of this book is to describe some recent data mining tools that have proven effective in dealing with data sets which often involve unc- tain description or other complexities that cause difficulty for the conv- tional approaches of logistic regression, neural network models, and de- sion trees. Among these traditional algorithms, neural network models often have a relative advantage when data is complex. We will discuss methods with simple examples, review applications, and evaluate relative advantages of several contemporary methods. Book Concept Our intent is to cover the fundamental concepts of data mining, to dem- strate the potential of gathering large sets of data, and analyzing these data sets to gain useful business understanding. We have organized the material into three parts. Part I introduces concepts. Part II contains chapters on a number of different techniques often used in data mining. Part III focuses on business applications of data mining. Not all of these chapters need to be covered, and their sequence could be varied at instructor design. The book will include short vignettes of how specific concepts have been applied in real practice. A series of representative data sets will be generated to demonstrate specific methods and concepts. References to data mining software and sites such as www.kdnuggets.com will be provided. Part I: Introduction Chapter 1 gives an overview of data mining, and provides a description of the data mining process. An overview of useful business applications is provided.

Product Details

ISBN-13: 9783540769163
Publisher: Springer Berlin Heidelberg
Publication date: 03/04/2008
Edition description: 2008
Pages: 180
Product dimensions: 6.10(w) x 9.25(h) x 0.02(d)

Table of Contents

Data Mining Process.- Data Mining Methods As Tools.- Memory-Based Reasoning Methods.- Association Rules in Knowledge Discovery.- Fuzzy Sets in Data Mining.- Rough Sets.- Support Vector Machines.- Genetic Algorithm Support to Data Mining.- Performance Evaluation for Predictive Modeling.- Applications.- Applications of Methods.
From the B&N Reads Blog

Customer Reviews