Advanced Manufacturing Technology for Medical Applications / Edition 1

Advanced Manufacturing Technology for Medical Applications / Edition 1

by Ian Gibson
     
 

ISBN-10: 0470016884

ISBN-13: 9780470016886

Pub. Date: 01/06/2006

Publisher: Wiley

Advanced manufacturing technologies (AMTs) combine novel manufacturing techniques and machines with the application of information technology, microelectronics and new organizational practices within the manufacturing sector. They include "hard" technologies such as rapid prototyping, and "soft" technologies such as scanned point cloud data manipulation. AMTs

…  See more details below

Overview

Advanced manufacturing technologies (AMTs) combine novel manufacturing techniques and machines with the application of information technology, microelectronics and new organizational practices within the manufacturing sector. They include "hard" technologies such as rapid prototyping, and "soft" technologies such as scanned point cloud data manipulation. AMTs contribute significantly to medical and biomedical engineering. The number of applications is rapidly increasing, with many important new products now under development.

Advanced Manufacturing Technology for Medical Applications outlines the state of the art in advanced manufacturing technology and points to the future development of this exciting field. Early chapters look at actual medical applications already employing AMT, and progress to how reverse engineering allows users to create system solutions to medical problems. The authors also investigate how hard and soft systems are used to create these solutions ready for building. Applications follow where models are created using a variety of different techniques to suit different medical problems

  • One of the first texts to be dedicated to the use of rapid prototyping, reverse engineering and associated software for medical applications
  • Ties together the two distinct disciplines of engineering and medicine
  • Features contributions from experts who are recognised pioneers in the use of these technologies for medical applications
  • Includes work carried out in both a research and a commercial capacity, with representatives from 3 companies that are established as world leaders in the field – Medical Modelling, Materialise, & Anatomics
  • Covers a comprehensive range of medical applications, from dentistry and surgery to neurosurgery and prosthetic design

Medical practitioners interested in implementing new advanced methods will find Advanced Manufacturing Technology for Medical Applications invaluable as will engineers developing applications for the medical industry. Academics and researchers also now have a vital resource at their disposal.

Read More

Product Details

ISBN-13:
9780470016886
Publisher:
Wiley
Publication date:
01/06/2006
Series:
Engineering Research Series (REP) Series, #11
Pages:
254
Product dimensions:
6.89(w) x 10.06(h) x 0.80(d)

Table of Contents

Contributors xi

1 Rapid Prototyping for Medical Applications 1
Ian Gibson

1.1 Overview 1

1.2 Workshop on Medical Applications for Reverse Engineering and Rapid Prototyping 2

1.3 Purpose of This Chapter (Overview) 3

1.4 Background on Rapid Prototyping 3

1.5 Stereolithography and Other Resin-type Systems 6

1.6 Fused Deposition Modelling and Selective Laser Sintering 7

1.7 Droplet/Binder Systems 9

1.8 Related Technology: Microsystems and Direct Metal Systems 10

1.9 File Preparation 11

1.10 Relationship with Other Technologies 12

1.11 Disadvantages with RP for Medical Applications 13

1.12 Summary 14

Bibliography 14

2 Role of Rapid Digital Manufacture in Planning and Implementation of Complex Medical Treatments 15
Andrew M. Christensen and Stephen M. Humphries

2.1 Introduction 16

2.2 Primer on Medical Imaging 16

2.3 Surgical Planning 18

2.3.1 Virtual planning 18

2.3.2 Implementation of the plan 20

2.4 RDM in Medicine 22

2.4.1 RP-generated anatomical models 22

2.4.2 Custom treatment devices with ADM 26

2.5 The Future 28

2.6 Conclusion 29

References 29

3 Biomodelling 31
P. D’Urso

3.1 Introduction 31

3.2 Surgical Applications of Real Virtuality 32

3.2.1 Cranio-maxillofacial biomodelling 33

3.2.1.1 Integration of biomodels with dental castings 34

3.2.1.2 Use of biomodels to shape maxillofacial implants 35

3.2.1.3 Use of biomodels to prefabricate templates and splints 35

3.2.1.4 Use of biomodels in restorative prosthetics 36

3.2.2 Use of real virtuality in customized cranio-maxillofacial prosthetics 36

3.2.2.1 Computer mirroring techniques for the generation of prostheses 38

3.2.2.2 Results of implantation 39

3.2.2.3 Advantages of prefabricated customized cranioplastic implants 39

3.2.3 Biomodel-guided stereotaxy 39

3.2.3.1 Development of stereotaxy 40

3.2.3.2 Development of biomodel-guided stereotactic surgery 40

3.2.3.3 Biomodel-guided stereotactic surgery with a template and markers 41

3.2.3.4 Biomodel-guided stereotactic surgery using the D’Urso frame 42

3.2.3.5 Utility of biomodel-guided stereotactic surgery 43

3.2.4 Vascular biomodelling 44

3.2.4.1 Biomodelling from CTA 44

3.2.4.2 Biomodelling from MRA 45

3.2.4.3 Clinical applications of vascular biomodels 45

3.2.4.4 Vascular biomodelling: technical note 46

3.2.5 Skull-base tumour surgery 46

3.2.6 Spinal surgery 48

3.2.6.1 Spinal biomodel stereotaxy 48

3.2.6.2 Technical considerations in spinal biomodelling 50

3.2.7 Orthopaedic biomodelling 50

3.3 Case Studies 51

References 55

4 Three-dimensional Data Capture and Processing 59
W. Feng, Y. F. Zhang, Y. F. Wu and Y. S. Wong

4.1 Introduction 60

4.2 3D Medical Scan Process 61

4.2.1 3D scanning 61

4.2.1.1 Computed tomography imaging and its applications 61

4.2.1.2 Magnetic resonance imaging and its applications 63

4.2.1.3 Ultrasound imaging and its applications 64

4.2.1.4 3D laser scanning 65

4.2.2 3D reconstruction 65

4.3 RE and RP in Medical Application 67

4.3.1 Proposed method for RP model construction from scanned data 68

4.3.2 Reconstruction software 69

4.3.3 Accuracy issues 70

4.4 Applications of Medical Imaging 71

4.5 Case Study 72

4.5.1 Case study with CT/MR scanned data 72

4.5.2 Case studies for RE and RP 74

4.6 Conclusions 76

References 76

Bibliography 76

5 Software for Medical Data Transfer 79
Ellen Dhoore

5.1 Introduction 79

5.2 Medical Imaging: from Medical Scanner to 3D Model 79

5.2.1 Introduction 79

5.2.2 Mimics® 80

5.2.2.1 Basic functionality of Mimics 80

5.2.2.2 Additional modules in Mimics 82

5.3 Computer Approach in Dental Implantology 92

5.3.1 Introduction 92

5.3.2 Virtual 3D planning environment: SimPlant® 92

5.3.3 Guide to accurate implant treatment: SurgiGuide® 93

5.3.3.1 General concept of SurgiGuide® 93

5.3.3.2 Different types of SurgiGuide® 94

5.3.3.3 Immediate SmileTM: temporary prosthesis for truly ‘immediate’ loading 100

5.4 Conclusions 102

Bibliography 103

6 BioBuild Software 105
Robert Thompson, Dr Gian Lorenzetto and Dr Paul D'Urso

6.1 Introduction 105

6.2 BioBuild Paradigm 109

6.2.1 Importing a dataset 110

6.2.2 Volume reduction 112

6.2.3 Anatomical orientation confirmation 112

6.2.4 Volume inspection and intensity thresholding 112

6.2.4.1 Intensity thresholding 113

6.2.4.2 Display options 114

6.2.5 Volume editing 114

6.2.5.1 Connectivity options 115

6.2.5.2 Volume morphology 115

6.2.5.3 Region morphology 116

6.2.5.4 Volume algebra 116

6.2.5.5 Labels 117

6.2.5.6 Volume transformations 117

6.2.6 Image processing 118

6.2.7 Build orientation optimization 118

6.2.8 3D visualization 119

6.2.9 RP file generation 119

6.3 Future Enhancements 120

6.3.1 Direct volume rendering (DVR) 120

6.4 Conclusion 121

References 121

7 Generalized Artificial Finger Joint Design Process Employing Reverse Engineering 123
I. Gibson and X. P. Wang

7.1 Introduction 123

7.1.1 Structure of a human finger joint 123

7.1.2 Rheumatoid arthritis disease 123

7.1.3 Finger joint replacement design 124

7.1.4 Requirements for new finger joint design 125

7.1.5 Research objectives 126

7.2 Supporting Literature 127

7.2.1 Previous prosthetic designs 127

7.2.2 More recent designs 128

7.2.3 Development of a new design 128

7.2.4 Need for a generalized finger joint prosthesis 129

7.3 Technological Supports for the Prosthesis Design 130

7.3.1 Reverse engineering 130

7.3.2 Comparison of different imaging techniques 131

7.3.3 Engineering and medical aspects 131

7.3.4 NURBS design theory 131

7.4 Proposed Methodology 132

7.4.1 Finger joint model preparation 132

7.4.2 Finger joint digitization 133

7.4.3 Surface reconstruction in paraform 135

7.4.4 Curve feature extraction 135

7.4.5 Database construction and surface generalization 135

7.4.6 Review of the procedure 136

7.5 Finger Joint Surface Modelling and Feature Extraction 136

7.5.1 Data acquisition of the bone samples 136

7.5.2 Finger joint surface reconstruction 137

7.5.3 NURBS curve and feature extraction 138

7.5.3.1 NURBS curve extraction from the PP head 138

7.5.3.2 NURBS curve feature extraction from the PP and MP base 141

7.5.3.3 Discussion on curve feature extraction 142

7.5.4 Automatic surface reconstruction and feature extraction 143

7.5.4.1 Automated identification of the bearing surface 143

7.5.4.2 Automated feature extraction 143

7.6 Database Construction and Surface Generalization 145

7.6.1 Finger joint database construction 145

7.6.1.1 Statistical dimension analysis 145

7.6.1.2 PP head geometrical features 150

7.6.2 Generalized finger joint surface reconstruction 155

7.7 Conclusions 159

Acknowledgements 161

References 161

8 Scaffold-based Tissue Engineering – Design and Fabrication of Matrices Using Solid Freeform Fabrication Techniques 163
Dietmar W. Hutmacher

8.1 Background 164

8.2 Introduction 167

8.3 Systems Based on Laser and UV Light Sources 167

8.3.1 Stereolithography apparatus (SLA) 167

8.3.2 Selective laser sintering (SLS) 170

8.3.3 Laminated object manufacturing (LOM) 171

8.3.4 Solid ground curing (SGC) 171

8.4 Systems Based on Printing Technology 172

8.4.1 Three-dimensional printing (3DP) 172

8.5 Systems Based on Extrusion/Direct Writing 176

8.6 Indirect SFF 180

8.7 Robotic and Mechatronically Controlled Systems 182

8.8 Conclusions 185

References 186

9 Direct Fabrication of Custom Orthopedic Implants Using Electron Beam Melting Technology 191
Ola L. A. Harrysson and Denis R. Cormier

9.1 Introduction 191

9.2 Literature Review 192

9.2.1 Custom joint replacement implants 192

9.2.2 Custom bone plates and implants 196

9.3 Electron Beam Melting Technology 199

9.4 Direct Fabrication of Titanium Orthopedic Implants 201

9.4.1 EBM fabrication of custom knee implants 201

9.4.2 EBM fabrication of custom bone plates 202

9.4.3 Direct fabrication of bone ingrowth surfaces 203

9.5 Summary and Conclusions 204

References 205

10 Modelling, Analysis and Fabrication of Below-knee Prosthetic Sockets Using Rapid Prototyping 207
J. Y. H. Fuh, W. Feng and Y. S. Wong

10.1 Introduction 208

10.1.1 Process of making the below-knee artificial prosthesis 208

10.1.1.1 Shaping of the positive mould 208

10.1.1.2 Fabrication of the prosthesis 209

10.1.2 Modelling, analysis and fabrication 210

10.2 Computer-Facilitated Approach 211

10.2.1 CAD modelling 211

10.2.2 Finite element analysis (FEA) 213

10.2.2.1 Geometries 213

10.2.2.2 Boundary conditions 213

10.2.2.3 Loading conditions 213

10.2.2.4 Analysis 214

10.3 Experiments 215

10.4 Results and Discussions 216

10.5 Rapid Socket Manufacturing Machine (RSMM) 219

10.5.1 RSMM design considerations 220

10.5.1.1 File format 220

10.5.1.2 Nozzle 220

10.5.1.3 System accuracy 221

10.5.2 Overview of the RSMM 221

10.5.3 Clinical test 223

10.5.4 Future work 224

10.6 Conclusions 225

Acknowledgements 225

References 225

Bibliography 226

11 Future Development of Medical Applications for Advanced Manufacturing Technology 227
Ian Gibson

11.1 Introduction 227

11.2 Scanning Technology 228

11.3 RP Technology 229

11.4 Direct Manufacture 230

11.5 Tissue Engineering 231

11.6 Business 232

Index 233

Read More

Customer Reviews

Average Review:

Write a Review

and post it to your social network

     

Most Helpful Customer Reviews

See all customer reviews >