Advances in Fuzzy Clustering and its Applications / Edition 1

Hardcover (Print)
Buy New
Buy New from BN.com
$121.13
Used and New from Other Sellers
Used and New from Other Sellers
from $83.48
Usually ships in 1-2 business days
(Save 42%)
Other sellers (Hardcover)
  • All (7) from $83.48   
  • New (5) from $115.56   
  • Used (2) from $83.48   

Overview

A comprehensive, coherent, and in depth presentation of the state of the art in fuzzy clustering.

Fuzzy clustering is now a mature and vibrant area of research with highly innovative advanced applications. Encapsulating this through presenting a careful selection of research contributions, this book addresses timely and relevant concepts and methods, whilst identifying major challenges and recent developments in the area. Split into five clear sections, Fundamentals, Visualization, Algorithms and Computational Aspects, Real-Time and Dynamic Clustering, and Applications and Case Studies, the book covers a wealth of novel, original and fully updated material, and in particular offers:

  • a focus on the algorithmic and computational augmentations of fuzzy clustering and its effectiveness in handling high dimensional problems, distributed problem solving and uncertainty management.
  • presentations of the important and relevant phases of cluster design, including the role of information granules, fuzzy sets in the realization of human-centricity facet of data analysis, as well as system modelling
  • demonstrations of how the results facilitate further detailed development of models, and enhance interpretation aspects
  • a carefully organized illustrative series of applications and case studies in which fuzzy clustering plays a pivotal role

This book will be of key interest to engineers associated with fuzzy control, bioinformatics, data mining, image processing, and pattern recognition, while computer engineers, students and researchers, in most engineering disciplines, will find this an invaluable resource and research tool.

Read More Show Less

Editorial Reviews

From the Publisher
Researchers, as well as those with incipient interest in the field, will find this book very useful and informative. (Computing Reviews, July 8, 2008)
Read More Show Less

Product Details

  • ISBN-13: 9780470027608
  • Publisher: Wiley
  • Publication date: 6/15/2007
  • Edition number: 1
  • Pages: 454
  • Product dimensions: 6.89 (w) x 9.72 (h) x 1.22 (d)

Meet the Author

José Valente de Oliveira received his Ph.D. (1996), M.Sc. (1992), and the “Licenciado” degree in Electrical and Computer Engineering from the IST, Technical University of Lisbon.  Currently he is an Assistant Professor in the Faculty of Science and Technology at the University of Algarve where he served as Deputy Dean from 2002-2003.  He was recently appointed director of the University of Algarve Informatics Lab, a research laboratory specializing in computational intelligence including fuzzy sets, fuzzy and intelligent systems, machine learning, and optimization.

Witold Pedrycz is a Professor and Canada Research Chair (CRC) in the Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada.  He is also with the Systems Research Institute of the Polish Academy of Sciences.  He is actively pursuing research in computational intelligence, fuzzy modeling, knowledge discovery and data mining, fuzzy control including fuzzy controllers, pattern recognition, knowledge-based neural networks, relational computation, bioinformatics, and Software Engineering.  He currently serves as an Associate Editor of IEEE Transactions on Fuzzy Systems.

Read More Show Less

Table of Contents

List of Contributors.

Foreword.

Preface.

Part I Fundamentals.

1 Fundamentals of Fuzzy Clustering (Rudolf Kruse, Christian Döring and Marie-Jeanne Lesot).

1.1 Introduction.

1.2 Basic Clustering Algorithms.

1.3 Distance Function Variants.

1.4 Objective Function Variants.

1.5 Update Equation Variants: Alternating Cluster Estimation.

1.6 Concluding Remarks.

Acknowledgements.

References.

2 Relational Fuzzy Clustering (Thomas A. Runkler).

2.1 Introduction.

2.2 Object and Relational Data.

2.3 Object Data Clustering Models.

2.4 Relational Clustering.

2.5 Relational Clustering with Non-spherical Prototypes.

2.6 Relational Data Interpreted as Object Data.

2.7 Summary.

2.8 Experiments.

2.9 Conclusions.

References.

3 Fuzzy Clustering with Minkowski Distance Functions (Patrick J.F. Groenen, Uzay Kaymak and Joost van Rosmalen).

3.1 Introduction.

3.2 Formalization.

3.3 The Majorizing Algorithm for Fuzzy C-means with Minkowski Distances.

3.4 The Effects of the Robustness Parameter.

3.5 Internet Attitudes.

3.6 Conclusions.

References.

4 Soft Cluster Ensembles (Kunal Punera and Joydeep Ghosh).

4.1 Introduction.

4.2 Cluster Ensembles.

4.3 Soft Cluster Ensembles.

4.4 Experimental Setup.

4.5 Soft vs. Hard Cluster Ensembles.

4.6 Conclusions and Future Work.

Acknowledgements.

References.

Part II Visualization.

5 Aggregation and Visualization of Fuzzy Clusters Based on Fuzzy Similarity Measures (János Abonyi and Balázs Feil).

5.1 Problem Definition.

5.2 Classical Methods for Cluster Validity and Merging.

5.3 Similarity of Fuzzy Clusters.

5.4 Visualization of Clustering Results.

5.5 Conclusions.

Appendix 5A.1 Validity Indices.

Appendix 5A.2 The Modified Sammon Mapping Algorithm.

Acknowledgements.

References.

6 Interactive Exploration of Fuzzy Clusters (Bernd Wiswedel, David E. Patterson and Michael R. Berthold).

6.1 Introduction.

6.2 Neighborgram Clustering.

6.3 Interactive Exploration.

6.4 Parallel Universes.

6.5 Discussion.

References.

Part III Algorithms and Computational Aspects.

7 Fuzzy Clustering with Participatory Learning and Applications (Leila Roling Scariot da Silva, Fernando Gomide and Ronald Yager).

7.1 Introduction.

7.2 Participatory Learning.

7.3 Participatory Learning in Fuzzy Clustering.

7.4 Experimental Results.

7.5 Applications.

7.6 Conclusions.

Acknowledgements.

References.

8 Fuzzy Clustering of Fuzzy Data (Pierpaolo D’Urso).

8.1 Introduction.

8.2 Informational Paradigm, Fuzziness and Complexity in Clustering Processes.

8.3 Fuzzy Data.

8.4 Fuzzy Clustering of Fuzzy Data.

8.5 An Extension: Fuzzy Clustering Models for Fuzzy Data Time Arrays.

8.6 Applicative Examples.

8.7 Concluding Remarks and Future Perspectives.

References.

9 Inclusion-based Fuzzy Clustering (Samia Nefti-Meziani and Mourad Oussalah).

9.1 Introduction.

9.2 Background: Fuzzy Clustering.

9.3 Construction of an Inclusion Index.

9.4 Inclusion-based Fuzzy Clustering.

9.5 Numerical Examples and Illustrations.

9.6 Conclusions.

Acknowledgements.

Appendix 9A.1.

References.

10 Mining Diagnostic Rules Using Fuzzy Clustering (Giovanna Castellano, Anna M. Fanelli and Corrado Mencar).

10.1 Introduction.

10.2 Fuzzy Medical Diagnosis.

10.3 Interpretability in Fuzzy Medical Diagnosis.

10.4 A Framework for Mining Interpretable Diagnostic Rules.

10.5 An Illustrative Example.

10.6 Concluding Remarks.

References.

11 Fuzzy Regression Clustering (Mikal Sato-Ilic).

11.1 Introduction.

11.2 Statistical Weighted Regression Models.

11.3 Fuzzy Regression Clustering Models.

11.4 Analyses of Residuals on Fuzzy Regression Clustering Models.

11.5 Numerical Examples.

11.6 Conclusion.

References.

12 Implementing Hierarchical Fuzzy Clustering in Fuzzy Modeling Using the Weighted Fuzzy C-means (George E. Tsekouras).

12.1 Introduction.

12.2 Takagi and Sugeno’s Fuzzy Model.

12.3 Hierarchical Clustering-based Fuzzy Modeling.

12.4 Simulation Studies.

12.5 Conclusions.

References.

13 Fuzzy Clustering Based on Dissimilarity Relations Extracted from Data (Mario G.C.A. Cimino, Beatrice Lazzerini and Francesco Marcelloni).

13.1 Introduction.

13.2 Dissimilarity Modeling.

13.3 Relational Clustering.

13.4 Experimental Results.

13.5 Conclusions.

References.

14 Simultaneous Clustering and Feature Discrimination with Applications (Hichem Frigui).

14.1 Introduction.

14.2 Background.

14.3 Simultaneous Clustering and Attribute Discrimination (SCAD).

14.4 Clustering and Subset Feature Weighting.

14.5 Case of Unknown Number of Clusters.

14.6 Application 1: Color Image Segmentation.

14.7 Application 2: Text Document Categorization and Annotation.

14.8 Application 3: Building a Multi-modal Thesaurus from Annotated Images.

14.9 Conclusions.

Appendix 14A.1.

Acknowledgements.

References.

Part IV Real-time and Dynamic Clustering.

15 Fuzzy Clustering in Dynamic Data Mining – Techniques and Applications (Richard Weber).

15.1 Introduction.

15.2 Review of Literature Related to Dynamic Clustering.

15.3 Recent Approaches for Dynamic Fuzzy Clustering.

15.4 Applications.

15.5 Future Perspectives and Conclusions.

Acknowledgement.

References.

16 Fuzzy Clustering of Parallel Data Streams (Jürgen Beringer and Eyke Hüllermeier).

16.1 Introduction.

16.2 Background.

16.3 Preprocessing and Maintaining Data Streams.

16.4 Fuzzy Clustering of Data Streams.

16.5 Quality Measures.

16.6 Experimental Validation.

16.7 Conclusions.

References.

17 Algorithms for Real-time Clustering and Generation of Rules from Data (Dimitar Filev and Plamer Angelov).

17.1 Introduction.

17.2 Density-based Real-time Clustering.

17.3 FSPC: Real-time Learning of Simplified Mamdani Models.

17.4 Applications.

17.5 Conclusion.

References.

Part V Applications and Case Studies.

18 Robust Exploratory Analysis of Magnetic Resonance Images using FCM with Feature Partitions (Mark D. Alexiuk and Nick J. Pizzi).

18.1 Introduction.

18.2 FCM with Feature Partitions.

18.3 Magnetic Resonance Imaging.

18.4 FMRI Analysis with FCMP.

18.5 Data-sets.

18.6 Results and Discussion.

18.7 Conclusion.

Acknowledgements.

References.

19 Concept Induction via Fuzzy C-means Clustering in a High-dimensional Semantic Space (Dawei Song, Guihong Cao, Peter Bruza and Raymond Lau).

19.1 Introduction.

19.2 Constructing a High-dimensional Semantic Space via Hyperspace Analogue to Language.

19.3 Fuzzy C-means Clustering.

19.4 Word Clustering on a HAL Space – A Case Study.

19.5 Conclusions and Future Work.

Acknowledgement.

References.

20 Novel Developments in Fuzzy Clustering for the Classification of Cancerous Cells using FTIR Spectroscopy (Xiao-Ying Wang, Jonathan M. Garibaldi, Benjamin Bird and Mike W. George).

20.1 Introduction.

20.2 Clustering Techniques.

20.3 Cluster Validity.

20.4 Simulated Annealing Fuzzy Clustering Algorithm.

20.5 Automatic Cluster Merging Method.

20.6 Conclusion.

Acknowledgements.

References.

Index.

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)