The book’s introductory part provides context to issues in the astronomical sciences that are also important to health, social, and physical sciences, particularly probabilistic and statistical aspects of classification and cluster analysis. The next part describes a number of astrophysics case studies that leverage a range of machine learning and data mining technologies. In the last part, developers of algorithms and practitioners of machine learning and data mining show how these tools and techniques are used in astronomical applications.
With contributions from leading astronomers and computer scientists, this book is a practical guide to many of the most important developments in machine learning, data mining, and statistics. It explores how these advances can solve current and future problems in astronomy and looks at how they could lead to the creation of entirely new algorithms within the data mining community.
The book’s introductory part provides context to issues in the astronomical sciences that are also important to health, social, and physical sciences, particularly probabilistic and statistical aspects of classification and cluster analysis. The next part describes a number of astrophysics case studies that leverage a range of machine learning and data mining technologies. In the last part, developers of algorithms and practitioners of machine learning and data mining show how these tools and techniques are used in astronomical applications.
With contributions from leading astronomers and computer scientists, this book is a practical guide to many of the most important developments in machine learning, data mining, and statistics. It explores how these advances can solve current and future problems in astronomy and looks at how they could lead to the creation of entirely new algorithms within the data mining community.

Advances in Machine Learning and Data Mining for Astronomy
744
Advances in Machine Learning and Data Mining for Astronomy
744Paperback(Reprint)
Product Details
ISBN-13: | 9781138199309 |
---|---|
Publisher: | Taylor & Francis |
Publication date: | 11/16/2016 |
Series: | Chapman & Hall/CRC Data Mining and Knowledge Discovery Series |
Edition description: | Reprint |
Pages: | 744 |
Product dimensions: | 6.90(w) x 9.90(h) x 1.60(d) |