Algebraic Homotopy

Paperback (Print)
Buy New
Buy New from BN.com
$114.57
Used and New from Other Sellers
Used and New from Other Sellers
from $113.61
Usually ships in 1-2 business days
(Save 8%)
Other sellers (Paperback)
  • All (4) from $113.61   
  • New (3) from $113.61   
  • Used (1) from $167.37   

Overview

This book gives a general outlook on homotopy theory; fundamental concepts, such as homotopy groups and spectral sequences, are developed from a few axioms and are thus available in a broad variety of contexts. Many examples and applications in topology and algebra are discussed, including an introduction to rational homotopy theory in terms of both differential Lie algebras and De Rham algebras. The author describes powerful tools for homotopy classification problems, particularly for the classification of homotopy types and for the computation of the group homotopy equivalences. Applications and examples of such computations are given, including when the fundamental group is non-trivial. Moreover, the deep connection between the homotopy classification problems and the cohomology theory of small categories is demonstrated. The prerequisites of the book are few: elementary topology and algebra. Consequently, this account will be valuable for non-specialists and experts alike. It is an important supplement to the standard presentations of algebraic topology, homotopy theory, category theory and homological algebra.
Read More Show Less

Editorial Reviews

Booknews
The author describes new tools for the homotopy classification problems, particularly for the classification of homotopy types and for the computation of the group of homotopy equivalences. Applications and examples of such computations are given. Also, the book demonstrates the deep connection of the homotopy classification problems with the cohomology theory of small categories. Acidic paper. Annotation c. Book News, Inc., Portland, OR (booknews.com)
Read More Show Less

Product Details

Table of Contents

Preface; Introduction; List of symbols; 1. Axioms for homotopy theory and examples of cofibration categories; 2. Homotopy theory in a cofibration category; 3. The homotopy spectral sequences in a cofibration category; 4. Extensions, coverings and cohomology groups of a category; 5. Maps between mapping cones; 6. Homotopy theory of CW-complexes; 7. Homotopy theory of complexes in a cofibration category; 8. Homotopy theory of Postnikov towers and the Sullivan-de Rham equivalence of rational homotopy categories; 9. Homotopy theory of reduced complexes; Bibliography; Index.
Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously
  • Anonymous

    Posted March 29, 2012

    No text was provided for this review.

  • Anonymous

    Posted March 29, 2012

    No text was provided for this review.


If you find inappropriate content, please report it to Barnes & Noble
Why is this product inappropriate?
Comments (optional)