Algorithms for Large Scale Linear Algebraic Systems: Applications in Science and Engineering / Edition 1

Algorithms for Large Scale Linear Algebraic Systems: Applications in Science and Engineering / Edition 1

by Gabriel Winter
     
 

View All Available Formats & Editions

ISBN-10: 9048150043

ISBN-13: 9789048150045

Pub. Date: 12/02/2010

Publisher: Springer Netherlands

An overview of the most successful algorithms and techniques for solving large, sparse systems of equations and some algorithms and strategies for solving optimization problems. The most important topics dealt with concern iterative methods, especially Krylov methods, ordering techniques, and some iterative optimization tools.
The book is a compendium of

Overview

An overview of the most successful algorithms and techniques for solving large, sparse systems of equations and some algorithms and strategies for solving optimization problems. The most important topics dealt with concern iterative methods, especially Krylov methods, ordering techniques, and some iterative optimization tools.
The book is a compendium of theoretical and numerical methods for solving large algebraic systems, special emphasis being placed on convergence and numerical behaviour as affected by rounding errors, accuracy in computing solutions for ill-conditioned matrices, preconditioning effectiveness, ordering procedures, stability factors, hybrid procedures and stopping criteria. Recent advances in numerical matrix calculations are presented, especially methods to accelerate the solution of symmetric and unsymmetric linear systems. Convergence analysis of the multi-grid method using a posteriori error estimation in second order elliptic equations are presented. Some inverse problems are also included. Evolution based software is described, such as genetic algorithms and evolution strategies, relations and class hierarchising to improve the exploration of large search spaces and finding near-global optima. Recent developments in messy genetic algorithms are also described.
The tutorial nature of the book makes it suitable for mathematicians, computer scientists, engineers and postgraduates.

Product Details

ISBN-13:
9789048150045
Publisher:
Springer Netherlands
Publication date:
12/02/2010
Series:
Nato Science Series C: (closed), #508
Edition description:
Softcover reprint of hardcover 1st ed. 1998
Pages:
410
Product dimensions:
6.14(w) x 9.21(h) x 0.86(d)

Table of Contents

Preface. Computational Complexity of Solving Large Sparse and Large Special Linear Systems of Equations; V.Y. Pan. Block Iterative Methods for Reduced Systems of Linear Equations; D.J. Evans. Parallel Implicit Schemes for the Solution of Linear Systems; D.J. Evans. Adaptive Multigrid Methods for Hybrid Finite Elements; L. Ferragut. On Finding and Analyzing the Structure of The Cholesky Factor; A. George. The Go-Away Algorithm for Block Factorization of a Sparse Matrix; P.R. Almeida, J.R. Franco. Renumbering Sparse Matrices by Simulated Annealing; G. Winter, et al. Preconditioned Krylov Subspace Methods; Y. Saad. Preconditioning Krylov Methods; A. Suárez, et al. Convergence and Numerical Behaviour of the Krylov Space Methods; Z. Strakos. Look-ahead Block-CG Algorithms; C.G. Broyden. Iterative Bi-CG Type Methods and Implementation Aspects; H. Van der Vorst, G.L.G. Sleijpen. Problems of Breakdown and Near-Breakdown in Lanczos-Based Algorithms; C. Brezinski, et al. Hybrid Methods for Solving Systems of Equations; C. Brezinski. ABS Algorithms for Linear Equations and Applications to Optimization; E. Spedicato, et al. Solving Inverse Thermal Problems Using Krylov Methods; G. Montero. An Introduction on Global Optimization by Genetic Algorithms; G. Winter, et al. Blackbox and Non-blackbox Optimization: A Common Perspective; H. Kargupta. Messy Genetic Algorithms: Recent Developments; H. Kargupta. List of Contributors. Index.

Customer Reviews

Average Review:

Write a Review

and post it to your social network

     

Most Helpful Customer Reviews

See all customer reviews >