An Introduction to Celestial Mechanics
This accessible text on classical celestial mechanics, the principles governing the motions of bodies in the Solar System, provides a clear and concise treatment of virtually all of the major features of solar system dynamics. Building on advanced topics in classical mechanics such as rigid body rotation, Langrangian mechanics and orbital perturbation theory, this text has been written for advanced undergraduates and beginning graduate students in astronomy, physics, mathematics and related fields. Specific topics covered include Keplerian orbits, the perihelion precession of the planets, tidal interactions between the Earth, Moon and Sun, the Roche radius, the stability of Lagrange points in the three-body problem and lunar motion. More than 100 exercises allow students to gauge their understanding and a solutions manual is available to instructors. Suitable for a first course in celestial mechanics, this text is the ideal bridge to higher level treatments.
1118726035
An Introduction to Celestial Mechanics
This accessible text on classical celestial mechanics, the principles governing the motions of bodies in the Solar System, provides a clear and concise treatment of virtually all of the major features of solar system dynamics. Building on advanced topics in classical mechanics such as rigid body rotation, Langrangian mechanics and orbital perturbation theory, this text has been written for advanced undergraduates and beginning graduate students in astronomy, physics, mathematics and related fields. Specific topics covered include Keplerian orbits, the perihelion precession of the planets, tidal interactions between the Earth, Moon and Sun, the Roche radius, the stability of Lagrange points in the three-body problem and lunar motion. More than 100 exercises allow students to gauge their understanding and a solutions manual is available to instructors. Suitable for a first course in celestial mechanics, this text is the ideal bridge to higher level treatments.
85.99 In Stock
An Introduction to Celestial Mechanics

An Introduction to Celestial Mechanics

by Richard Fitzpatrick
An Introduction to Celestial Mechanics

An Introduction to Celestial Mechanics

by Richard Fitzpatrick

eBook

$85.99 

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers

LEND ME® See Details

Overview

This accessible text on classical celestial mechanics, the principles governing the motions of bodies in the Solar System, provides a clear and concise treatment of virtually all of the major features of solar system dynamics. Building on advanced topics in classical mechanics such as rigid body rotation, Langrangian mechanics and orbital perturbation theory, this text has been written for advanced undergraduates and beginning graduate students in astronomy, physics, mathematics and related fields. Specific topics covered include Keplerian orbits, the perihelion precession of the planets, tidal interactions between the Earth, Moon and Sun, the Roche radius, the stability of Lagrange points in the three-body problem and lunar motion. More than 100 exercises allow students to gauge their understanding and a solutions manual is available to instructors. Suitable for a first course in celestial mechanics, this text is the ideal bridge to higher level treatments.

Product Details

ISBN-13: 9781107239609
Publisher: Cambridge University Press
Publication date: 06/28/2012
Sold by: Barnes & Noble
Format: eBook
File size: 16 MB
Note: This product may take a few minutes to download.

About the Author

Richard Fitzpatrick is Professor of Physics at the University of Texas, Austin, where he has been a faculty member since 1994. He earned his Master's degree in Physics at the University of Cambridge and his DPhil in Astronomy at the University of Sussex. He is a longstanding Fellow of the Royal Astronomical Society and author of Maxwell's Equations and the Principles of Electromagnetism (2008).

Table of Contents

Preface; 1. Newtonian mechanics; 2. Newtonian gravity; 3. Keplerian orbits; 4. Orbits in central force-fields; 5. Rotating reference frames; 6. Lagrangian mechanics; 7. Rigid body rotation; 8. Three-body problem; 9. Secular perturbation theory; 10. Lunar motion; Appendix A: useful mathematics; Appendix B: derivation of Lagrange planetary equations; Appendix C: expansion of orbital evolution equations; Bibliography; Index.
From the B&N Reads Blog

Customer Reviews