An Introduction to Homotopy Theory
Since the introduction of homotopy groups by Hurewicz in 1935, homotopy theory has occupied a prominent place in the development of algebraic topology. This monograph provides an account of the subject which bridges the gap between the fundamental concepts of topology and the more complex treatment to be found in original papers. The first six chapters describe the essential ideas of homotopy theory: homotopy groups, the classical theorems, the exact homotopy sequence, fibre-spaces, the Hopf invariant, and the Freudenthal suspension. The final chapters discuss J. H. C. Whitehead's cell-complexes and their application to homotopy groups of complexes.
1100959578
An Introduction to Homotopy Theory
Since the introduction of homotopy groups by Hurewicz in 1935, homotopy theory has occupied a prominent place in the development of algebraic topology. This monograph provides an account of the subject which bridges the gap between the fundamental concepts of topology and the more complex treatment to be found in original papers. The first six chapters describe the essential ideas of homotopy theory: homotopy groups, the classical theorems, the exact homotopy sequence, fibre-spaces, the Hopf invariant, and the Freudenthal suspension. The final chapters discuss J. H. C. Whitehead's cell-complexes and their application to homotopy groups of complexes.
50.0 In Stock
An Introduction to Homotopy Theory

An Introduction to Homotopy Theory

by P. J. Hilton
An Introduction to Homotopy Theory

An Introduction to Homotopy Theory

by P. J. Hilton

Paperback(New Edition)

$50.00 
  • SHIP THIS ITEM
    In stock. Ships in 1-2 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

Since the introduction of homotopy groups by Hurewicz in 1935, homotopy theory has occupied a prominent place in the development of algebraic topology. This monograph provides an account of the subject which bridges the gap between the fundamental concepts of topology and the more complex treatment to be found in original papers. The first six chapters describe the essential ideas of homotopy theory: homotopy groups, the classical theorems, the exact homotopy sequence, fibre-spaces, the Hopf invariant, and the Freudenthal suspension. The final chapters discuss J. H. C. Whitehead's cell-complexes and their application to homotopy groups of complexes.

Product Details

ISBN-13: 9780521052658
Publisher: Cambridge University Press
Publication date: 01/01/1953
Series: Cambridge Tracts in Mathematics , #43
Edition description: New Edition
Pages: 156
Product dimensions: 5.51(w) x 8.50(h) x 0.35(d)

Table of Contents

1. Introduction; 2. The homotopy groups; 3. The classical theorems of homotopy theory; 4. The exact homotopy sequence; 5. Fibre-Spaces; 6. The Hopf invariant and suspension theorems; 7. Whitehead cell-complexes; 8. Homotopy groups of complexes.
From the B&N Reads Blog

Customer Reviews