An Introduction to Statistical Learning: with Applications in R / Edition 1

An Introduction to Statistical Learning: with Applications in R / Edition 1

by Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani
     
 

View All Available Formats & Editions

ISBN-10: 1461471370

ISBN-13: 9781461471370

Pub. Date: 07/31/2013

Publisher: Springer New York

An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance to marketing to astrophysics in the past twenty years. This book presents some of the most important modeling and prediction

Overview

An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance to marketing to astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform.

Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra.

Product Details

ISBN-13:
9781461471370
Publisher:
Springer New York
Publication date:
07/31/2013
Series:
Springer Texts in Statistics Series , #103
Edition description:
1st ed. 2013, Corr. 5th printing 2015
Pages:
426
Sales rank:
112,499
Product dimensions:
6.20(w) x 9.30(h) x 1.00(d)

Table of Contents

Introduction.- Statistical Learning.- Linear Regression.- Classification.- Resampling Methods.- Linear Model Selection and Regularization.- Moving Beyond Linearity.- Tree-Based Methods.- Support Vector Machines.- Unsupervised Learning.- Index.

Customer Reviews

Average Review:

Write a Review

and post it to your social network

     

Most Helpful Customer Reviews

See all customer reviews >