Anomalous Relaxation in Colloidal Systems
The thesis presents a systematic study of the Mpemba effect in a colloidal system with a micron-sized particle diffusing in a water bath. While the Mpemba effect, where a system’s thermal relaxation time is a non-monotonic function of the initial temperature, has been observed in water since Aristotle’s era, the underlying mechanism of the effect is still unknown. Recent studies indicate that the effect is not limited to water and has been studied both experimentally and numerically in a wide variety of systems. By carefully designing a double-well potential using feedback-based optical tweezers, the author demonstrates that an initially hot system can sometimes cool faster than an initially warm system. The author also presents the first observation in any system of another counterintuitive effect—the inverse Mpemba effect—where the colder of the two samples reaches the thermal equilibrium at a hot temperature first. The results for both the observations agree with theoretical predictions based on the Fokker-Planck equation. The experiments reveal that, for carefully chosen conditions, a strong version of both of the effects are observed where a system can relax to the bath temperature exponentially faster than under typical conditions.
1141727161
Anomalous Relaxation in Colloidal Systems
The thesis presents a systematic study of the Mpemba effect in a colloidal system with a micron-sized particle diffusing in a water bath. While the Mpemba effect, where a system’s thermal relaxation time is a non-monotonic function of the initial temperature, has been observed in water since Aristotle’s era, the underlying mechanism of the effect is still unknown. Recent studies indicate that the effect is not limited to water and has been studied both experimentally and numerically in a wide variety of systems. By carefully designing a double-well potential using feedback-based optical tweezers, the author demonstrates that an initially hot system can sometimes cool faster than an initially warm system. The author also presents the first observation in any system of another counterintuitive effect—the inverse Mpemba effect—where the colder of the two samples reaches the thermal equilibrium at a hot temperature first. The results for both the observations agree with theoretical predictions based on the Fokker-Planck equation. The experiments reveal that, for carefully chosen conditions, a strong version of both of the effects are observed where a system can relax to the bath temperature exponentially faster than under typical conditions.
169.0 In Stock
Anomalous Relaxation in Colloidal Systems

Anomalous Relaxation in Colloidal Systems

by Avinash Kumar
Anomalous Relaxation in Colloidal Systems

Anomalous Relaxation in Colloidal Systems

by Avinash Kumar

eBook1st ed. 2022 (1st ed. 2022)

$169.00 

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers


Overview

The thesis presents a systematic study of the Mpemba effect in a colloidal system with a micron-sized particle diffusing in a water bath. While the Mpemba effect, where a system’s thermal relaxation time is a non-monotonic function of the initial temperature, has been observed in water since Aristotle’s era, the underlying mechanism of the effect is still unknown. Recent studies indicate that the effect is not limited to water and has been studied both experimentally and numerically in a wide variety of systems. By carefully designing a double-well potential using feedback-based optical tweezers, the author demonstrates that an initially hot system can sometimes cool faster than an initially warm system. The author also presents the first observation in any system of another counterintuitive effect—the inverse Mpemba effect—where the colder of the two samples reaches the thermal equilibrium at a hot temperature first. The results for both the observations agree with theoretical predictions based on the Fokker-Planck equation. The experiments reveal that, for carefully chosen conditions, a strong version of both of the effects are observed where a system can relax to the bath temperature exponentially faster than under typical conditions.

Product Details

ISBN-13: 9783031132803
Publisher: Springer-Verlag New York, LLC
Publication date: 10/22/2022
Series: Springer Theses
Sold by: Barnes & Noble
Format: eBook
File size: 10 MB

About the Author

Dr. Avinash Kumar was born in Munger, India and received his integrated BS-MS degree in Physics in 2015 from the Indian Institute of Science Education and Research Kolkata, India. He received his PhD degree in Physics, under the supervision of Prof. John Bechhoefer, from Simon Fraser University, Canada. Currently, Dr. Kumar is a postdoctoral associate in the Department of Cell Biology at the Yale School of Medicine, USA.

Table of Contents

Chapter 1. Introduction.- Chapter 2. Particle dynamics.- Chapter 3. Optical Feedback traps.- Chapter 4. Mpemba effect.- Chapter 5. Inverse Mpemba effect.- Chapter 6. Higher-order Mpemba effect.- Chapter 7. Conclusions.

From the B&N Reads Blog

Customer Reviews