BN.com Gift Guide

Applications Of A Time-Dependent Polar Ionosphere Model For Radio Modification Experiments.

( 1 )

Overview

A time-dependent self-consistent ionosphere model (SLIM) has been developed to study the response of the polar ionosphere to radio modification experiments, similar to those conducted at the High-Frequency Active Auroral Research Program (HAARP) facility in Gakona, Alaska. SCIM solves the ion continuity and momentum equations, coupled with average electron and ion gas energy equations; it is validated by reproducing the diurnal variation of the daytime ionosphere critical frequency, as measured with an ionosonde....
See more details below
Paperback
$66.50
BN.com price
(Save 3%)$69.00 List Price
Other sellers (Paperback)
  • All (4) from $72.01   
  • New (3) from $72.01   
  • Used (1) from $81.34   
Sending request ...

More About This Book

Overview

A time-dependent self-consistent ionosphere model (SLIM) has been developed to study the response of the polar ionosphere to radio modification experiments, similar to those conducted at the High-Frequency Active Auroral Research Program (HAARP) facility in Gakona, Alaska. SCIM solves the ion continuity and momentum equations, coupled with average electron and ion gas energy equations; it is validated by reproducing the diurnal variation of the daytime ionosphere critical frequency, as measured with an ionosonde. Powerful high-frequency (HF) electromagnetic waves can drive naturally occurring electrostatic plasma waves, enhancing the ionospheric reflectivity to ultra-high frequency (UHF) radar near the HF-interaction region as well as heating the electron gas. Measurements made during active experiments are compared with model calculations to clarify fundamental altitude-dependent physical processes governing the vertical composition and temperature of the polar ionosphere. The modular UHF ionosphere radar (MUIR), co-located with HAARP, measured HF-enhanced ion-line (HFIL) reflection height and observed that it ascended above its original altitude after the ionosphere had been HF-heated for several minutes. The HFIL ascent is found to follow from HF-induced depletion of plasma surrounding the F-region peak density layer, due to temperature-enhanced transport of atomic oxygen ions along the geomagnetic field line. The lower F-region and topside ionosphere also respond to HF heating. Model results show that electron temperature increases will lead to suppression of molecular ion recombination rates in the lower F region and enhancements of ambipolar diffusion in the topside ionosphere, resulting in a net enhancement of slant total electron content (TEC); these results have been confirmed by experiment. Additional evidence for the model-predicted topside ionosphere density enhancements via ambipolar diffusion is provided by in-situ measurements of ion density and vertical velocity over HAARP made by a Defense Meteorological Satellite Program (DMSP) satellite.
Read More Show Less

Product Details

  • ISBN-13: 9781244589285
  • Publisher: BiblioLabsII
  • Publication date: 9/30/2011
  • Pages: 214
  • Product dimensions: 7.44 (w) x 9.69 (h) x 0.45 (d)

Customer Reviews

Average Rating 5
( 1 )
Rating Distribution

5 Star

(1)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously
Sort by: Showing 1 Customer Reviews
  • Anonymous

    Posted February 4, 2012

    No text was provided for this review.

Sort by: Showing 1 Customer Reviews

If you find inappropriate content, please report it to Barnes & Noble
Why is this product inappropriate?
Comments (optional)