Applied Kinematics Worktext / Edition 1

Paperback (Print)
Buy New
Buy New from BN.com
$105.00
Used and New from Other Sellers
Used and New from Other Sellers
from $53.89
Usually ships in 1-2 business days
(Save 56%)
Other sellers (Paperback)
  • All (7) from $53.89   
  • New (4) from $111.11   
  • Used (3) from $53.89   

Overview

Combining graphical and mathematical approaches to the analysis and synthesis of both classical and modern mechanism problems, this book is a combination text/workbook that provides a comprehensive learning module when used with a kinematics/mechanism design text.

Emphasizing application rather than theory, the text portion of Applied Kinematics Worktext provides important background information to increase students' problem-solving skills in kinematics. Using basic drafting principles, algebra, trigonometry, and physics, each topic provides a multitude of exercises.

The workbook portion of the text presents contemporary mechanism problems to stimulate student interest and apply and reinforce the principles introduced in the text.

Read More Show Less

Product Details

  • ISBN-13: 9780130842084
  • Publisher: Prentice Hall
  • Publication date: 5/28/2001
  • Edition description: New Edition
  • Edition number: 1
  • Pages: 389
  • Product dimensions: 8.18 (w) x 10.70 (h) x 0.86 (d)

Read an Excerpt

This book combines graphical and mathematical approaches to the analysis and synthesis of both classical and modern mechanism problems. The book consists of two major parts—a textbook and a workbook.

The textbook gives students background information, that, when applied, increases problem-solving skills in dealing with kinematics. Each topic provides extensive problem-solving exercises, using basic drafting principles, trigonometry, algebra, and physics. The textbook places more emphasis on application than theory.

The workbook presents many intriguing contemporary mechanism problems designed to stimulate interest in the application of principles learned in the textbook. This book will be of maximum benefit when accompanied by instructor's lectures and information sheets. It can also be used as a comprehensive learning module when used with a kinematics/mechanism design textbook.

The book starts with definitions of mechanisms in Chapter 1. Gruebler's equation is utilized to calculate degrees of freedom, which is used to determine the number of input motion required for a mechanism. Chapter 2 provides a review for vectors. Vector addition and subtraction, as well as the definition of vectors, is discussed here. The purpose of this chapter is to prepare students for the analysis of velocity and acceleration in the subsequent chapters.

In Chapter 3, displacement of mechanisms is extensively discussed. The focus is placed on the mechanisms with different physical forms that function as four-, six-, or eight-bars. The design of these mechanisms, which employs both graphical and mathematical approaches, is also discussed. The problems presented in this chapter represent a wide range of applications such as automobile suspension, dump truck, robot gripper, crank-shaper, eccentric mechanism, Whitworth mechanism, transport mechanism, excavator, pantograph, and Thompson and Tabor indicators.

Chapter 4 begins with the topic of locating instant centers. In this chapter, graphical approaches utilizing instant center, link-to-link (parallel-line or connecting link), resolution (component), and polygon (relative velocity) methods for determining velocities are discussed. The velocity of mechanisms other than linkages, such as pumps and followers on cams, is also included. The problems in this chapter allow students to determine both linear and angular velocities for different mechanisms from very simple four-bars to a complex welding robot.

Chapter 5 deals with the acceleration of mechanisms. Acceleration polygon and acceleration image are the two methods which are extensively discussed. Coriolis acceleration for contact members is also included. The problems associated with this chapter deal with the more complex and challenging mechanisms such as engines, quick-return mechanisms, and the Geneva wheel, as well as those of simpler four-bars.

In Chapter 6, students consolidate what they learn from Chapters 3, 4, and 5 to construct velocity and acceleration graphs. The graphs show how velocity and acceleration vary during a complete cycle. The approach of graphical differentiation is discussed in this chapter. In Chapter 7, synthesis of mechanisms, primarily four- and six-bars, is discussed in detail. Students can set up their own versions of synthesis based on the desired motion of a driven member. Problems involving automobile suspension and a dumpster mechanism are among the problems designed for this chapter.

In Chapter 8, disk (plate) cams are discussed in detail. The construction of displacement, velocity, and acceleration profiles is presented first. The profiles of different types of follower motion are discussed and demonstrated in the example problems. The method required for constructing a cam contour is also discussed. Students can practice how to construct cam contours in the problems related to this chapter. In addition, students can calculate the velocity and acceleration of a cam follower at a given time for each of these problems.

Chapter 9 begins with a brief discussion of gear fundamentals. Gear trains, which include simple, compound, reverted, planetary, and differential, are extensively discussed here. For simple and compound gear trains, the focus is on how to calculate angular velocity, or rpm, of all gears in the train. Force and power are also discussed for these two types of gear trains. For planetary gear trains, mathematical formulas are substituted by the tabular method, which utilizes the principle of superposition, for a more effective approach. The tables required for solving the planetary gear problems are already set up in the workbook. Students just fill out the spaces in a table to complete the solution.

Motion simulation using computer-aided engineering software (CAE) is introduced in Chapter 10. A general strategy is developed for using different CAE software. Although a more specific procedure is discussed for I-DEAS, the intent of this chapter is not to teach students how to use any particular software, but to give an overview of motion simulation.

The space diagram used for each problem in the workbook is arranged to allow the graphical solution to be properly centered without interference. If there is a mathematical calculation required, it can be written on a separate sheet of paper. The corresponding problems have been selected to familiarize students with the material in the section. Although students can complete the problems in the workbook at an independent pace, depending on whether the course is a one-quarter or a one-semester sequence, the problems should be completed in the sequence given by the book.

This book is designed to have enough flexibility to provide a variety of instructional options. The choice and number of problems selected by the instructor can be based on the background and occupational interests of the students. In a one-quarter course, the instructor can direct students through the textbook and assign a limited number of problems from the workbook. A one-semester course would permit assignment, with the provided scaled spaced diagrams, of the workbook. The number of problems, with provided problem sheets, should give students enough problem-solving experience in a one-semester course. A two-semester course would permit assignment of all the problems in the workbook, supplemented with more complicated mechanism design projects of the instructor's choice. Chapters 4 through 9 in the workbook provide additional problems requiring blank sheets of paper to give students more experience.

Read More Show Less

Table of Contents

1. Definitions of Mechanisms.

2. Vectors.

3. Displacement and Position of Mechanisms.

4. Velocity of Mechanisms.

5. Acceleration of Mechanisms.

6. Velocity and Acceleration Graphs and Graphical Differentiation.

7. Synthesis of Mechanisms.

8. Cam Design.

9. Gear Trains.

10. Use of Computer-Aided Engineering Software.

Index.

Read More Show Less

Preface

This book combines graphical and mathematical approaches to the analysis and synthesis of both classical and modern mechanism problems. The book consists of two major parts—a textbook and a workbook.

The textbook gives students background information, that, when applied, increases problem-solving skills in dealing with kinematics. Each topic provides extensive problem-solving exercises, using basic drafting principles, trigonometry, algebra, and physics. The textbook places more emphasis on application than theory.

The workbook presents many intriguing contemporary mechanism problems designed to stimulate interest in the application of principles learned in the textbook. This book will be of maximum benefit when accompanied by instructor's lectures and information sheets. It can also be used as a comprehensive learning module when used with a kinematics/mechanism design textbook.

The book starts with definitions of mechanisms in Chapter 1. Gruebler's equation is utilized to calculate degrees of freedom, which is used to determine the number of input motion required for a mechanism. Chapter 2 provides a review for vectors. Vector addition and subtraction, as well as the definition of vectors, is discussed here. The purpose of this chapter is to prepare students for the analysis of velocity and acceleration in the subsequent chapters.

In Chapter 3, displacement of mechanisms is extensively discussed. The focus is placed on the mechanisms with different physical forms that function as four-, six-, or eight-bars. The design of these mechanisms, which employs both graphical and mathematical approaches, is also discussed. The problems presented in this chapter represent a wide range of applications such as automobile suspension, dump truck, robot gripper, crank-shaper, eccentric mechanism, Whitworth mechanism, transport mechanism, excavator, pantograph, and Thompson and Tabor indicators.

Chapter 4 begins with the topic of locating instant centers. In this chapter, graphical approaches utilizing instant center, link-to-link (parallel-line or connecting link), resolution (component), and polygon (relative velocity) methods for determining velocities are discussed. The velocity of mechanisms other than linkages, such as pumps and followers on cams, is also included. The problems in this chapter allow students to determine both linear and angular velocities for different mechanisms from very simple four-bars to a complex welding robot.

Chapter 5 deals with the acceleration of mechanisms. Acceleration polygon and acceleration image are the two methods which are extensively discussed. Coriolis acceleration for contact members is also included. The problems associated with this chapter deal with the more complex and challenging mechanisms such as engines, quick-return mechanisms, and the Geneva wheel, as well as those of simpler four-bars.

In Chapter 6, students consolidate what they learn from Chapters 3, 4, and 5 to construct velocity and acceleration graphs. The graphs show how velocity and acceleration vary during a complete cycle. The approach of graphical differentiation is discussed in this chapter. In Chapter 7, synthesis of mechanisms, primarily four- and six-bars, is discussed in detail. Students can set up their own versions of synthesis based on the desired motion of a driven member. Problems involving automobile suspension and a dumpster mechanism are among the problems designed for this chapter.

In Chapter 8, disk (plate) cams are discussed in detail. The construction of displacement, velocity, and acceleration profiles is presented first. The profiles of different types of follower motion are discussed and demonstrated in the example problems. The method required for constructing a cam contour is also discussed. Students can practice how to construct cam contours in the problems related to this chapter. In addition, students can calculate the velocity and acceleration of a cam follower at a given time for each of these problems.

Chapter 9 begins with a brief discussion of gear fundamentals. Gear trains, which include simple, compound, reverted, planetary, and differential, are extensively discussed here. For simple and compound gear trains, the focus is on how to calculate angular velocity, or rpm, of all gears in the train. Force and power are also discussed for these two types of gear trains. For planetary gear trains, mathematical formulas are substituted by the tabular method, which utilizes the principle of superposition, for a more effective approach. The tables required for solving the planetary gear problems are already set up in the workbook. Students just fill out the spaces in a table to complete the solution.

Motion simulation using computer-aided engineering software (CAE) is introduced in Chapter 10. A general strategy is developed for using different CAE software. Although a more specific procedure is discussed for I-DEAS, the intent of this chapter is not to teach students how to use any particular software, but to give an overview of motion simulation.

The space diagram used for each problem in the workbook is arranged to allow the graphical solution to be properly centered without interference. If there is a mathematical calculation required, it can be written on a separate sheet of paper. The corresponding problems have been selected to familiarize students with the material in the section. Although students can complete the problems in the workbook at an independent pace, depending on whether the course is a one-quarter or a one-semester sequence, the problems should be completed in the sequence given by the book.

This book is designed to have enough flexibility to provide a variety of instructional options. The choice and number of problems selected by the instructor can be based on the background and occupational interests of the students. In a one-quarter course, the instructor can direct students through the textbook and assign a limited number of problems from the workbook. A one-semester course would permit assignment, with the provided scaled spaced diagrams, of the workbook. The number of problems, with provided problem sheets, should give students enough problem-solving experience in a one-semester course. A two-semester course would permit assignment of all the problems in the workbook, supplemented with more complicated mechanism design projects of the instructor's choice. Chapters 4 through 9 in the workbook provide additional problems requiring blank sheets of paper to give students more experience.

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)