Arithmetic Geometry

Overview

This book is the result of a conference on arithmetic geometry, held July 30 through August 10, 1984 at the University of Connecticut at Storrs, the purpose of which was to provide a coherent overview of the subject. This subject has enjoyed a resurgence in popularity due in part to Faltings' proof of Mordell's conjecture. Included are extended versions of almost all of the instructional lectures and, in addition, a translation into English of Faltings' ground-breaking paper. ARITHMETIC GEOMETRY should be of ...
See more details below
Paperback (Softcover reprint of the original 1st ed. 1986)
$60.10
BN.com price
(Save 14%)$69.95 List Price
Other sellers (Paperback)
  • All (7) from $52.40   
  • New (7) from $52.40   
Sending request ...

Overview

This book is the result of a conference on arithmetic geometry, held July 30 through August 10, 1984 at the University of Connecticut at Storrs, the purpose of which was to provide a coherent overview of the subject. This subject has enjoyed a resurgence in popularity due in part to Faltings' proof of Mordell's conjecture. Included are extended versions of almost all of the instructional lectures and, in addition, a translation into English of Faltings' ground-breaking paper. ARITHMETIC GEOMETRY should be of great use to students wishing to enter this field, as well as those already working in it. This revised second printing now includes a comprehensive index.
Read More Show Less

Product Details

  • ISBN-13: 9781461386575
  • Publisher: Springer New York
  • Publication date: 7/31/2012
  • Edition description: Softcover reprint of the original 1st ed. 1986
  • Edition number: 1
  • Pages: 353
  • Product dimensions: 6.14 (w) x 9.21 (h) x 0.77 (d)

Table of Contents

I Some Historical Notes.- §1. The Theorems of Mordell and Mordell-Weil.- §2. Siegel’s Theorem About Integral Points.- §3. The Proof of the Mordell Conjecture for Function Fields, by Manin and Grauert.- §4. The New Ideas of Parshin and Arakelov, Relating the Conjectures of Mordell and Shafarevich.- §5. The Work of Szpiro, Extending This to Positive Characteristic.- §6. The Theorem of Tate About Endomorphisms of Abelian Varieties over Finite Fields.- §7. The Work of Zarhin.- Bibliographic Remarks.- II Finiteness Theorems for Abelian Varieties over Number Fields.- §1. Introduction.- §2. Semiabelian Varieties.- §3. Heights.- §4. Isogenies.- §5. Endomorphisms.- §6. Finiteness Theorems.- References.- Erratum.- III Group Schemes, Formal Groups, and p-Divisible Groups.- §1. Introduction.- §2. Group Schemes, Generalities.- §3. Finite Group Schemes.- §4. Commutative Finite Group Schemes.- §5. Formal Groups.- §6. p-Divisible Groups.- §7. Applications of Groups of Type (p, p,…, p) to p-Divisible Groups.- References.- IV Abelian Varieties over—.- §0. Introduction.- §1. Complex Tori.- §2. Isogenies of Complex Tori.- §3. Abelian Varieties.- §4. The Néron-Severi Group and the Picard Group.- §5. Polarizations and Polarized Abelian Manifolds.- §6. The Space of Principally Polarized Abelian Manifolds.- References.- V Abelian Varieties.- §1. Definitions.- §2. Rigidity.- §3. Rational Maps into Abelian Varieties.- §4. Review of the Cohomology of Schemes.- §5. The Seesaw Principle.- §6. The Theorems of the Cube and the Square.- §7. Abelian Varieties Are Projective.- §8. Isogenies.- §9. The Dual Abelian Variety: Definition.- §10. The Dual Abelian Variety: Construction.- §11. The Dual Exact Sequence.- §12. Endomorphisms.- §13. Polarizations and the Cohomology of Invertible Sheaves.- §14. A Finiteness Theorem.- §15. The Étale Cohomology of an Abelian Variety.- §16. Pairings.- §17. The Rosati Involution.- §18. Two More Finiteness Theorems.- §19. The Zeta Function of an Abelian Variety.- §20. Abelian Schemes.- References.- VI The Theory of Height Functions.- The Classical Theory of Heights.- §1. Absolute Values.- §2. Height on Projective Space.- §3. Heights on Projective Varieties.- §4. Heights on Abelian Varieties.- §5. The Mordell-Weil Theorem.- Heights and Metrized Line Bundles.- §6. Metrized Line Bundles on Spec (R).- §7. Metrized Line Bundles on Varieties.- §8. Distance Functions and Logarithmic Singularities.- References.- VII Jacobian Varieties.- §1. Definitions.- §2. The Canonical Maps from C to its Jacobian Variety.- §3. The Symmetric Powers of a Curve.- §4. The Construction of the Jacobian Variety.- §5. The Canonical Maps from the Symmetric Powers of C to its Jacobian Variety.- §6. The Jacobian Variety as Albanese Variety; Autoduality.- §7. Weil’s Construction of the Jacobian Variety.- §8. Generalizations.- §9. Obtaining Coverings of a Curve from its Jacobian; Application to Mordell’s Conjecture.- §10. Abelian Varieties Are Quotients of Jacobian Varieties.- §11. The Zeta Function of a Curve.- §12. Torelli’s Theorem: Statement and Applications.- §13. Torelli’s Theorem: The Proof.- Bibliographic Notes for Abelian Varieties and Jacobian Varieties.- References.- VIII Néron Models.- §1. Properties of the Néron Model, and Examples.- §2. Weil’s Construction: Proof.- §3. Existence of the Néron Model: R Strictly Local.- §4. Projective Embedding.- §5. Appendix: Prime Divisors.- References.- IX Siegel Moduli Schemes and Their Compactifications over—.- §0. Notations and Conventions.- §1. The Moduli Functors and Their Coarse Moduli Schemes.- §2. Transcendental Uniformization of the Moduli Spaces.- §3. The Satake Compactification.- §4. Toroidal Compactification.- §5. Modular Heights.- References.- X Heights and Elliptic Curves.- §1. The Height of an Elliptic Curve.- §2. An Estimate for the Height.- §3. Weil Curves.- §4. A Relation with the Canonical Height.- References.- XI Lipman’s Proof of Resolution of Singularities for Surfaces.- §1. Introduction.- §2. Proper Intersection Numbers and the Vanishing Theorem.- §3. Step 1: Reduction to Rational Singularities.- §4. Basic Properties of Rational Singularities.- §5. Step 2: Blowing Up the Dualizing Sheaf.- §6. Step 3: Resolution of Rational Double Points.- References.- XII An Introduction to Arakelov Intersection Theory.- §1. Definition of the Arakelov Intersection Pairing.- §2. Metrized Line Bundles.- §3. Volume Forms.- §4. The Riemann-Roch Theorem and the Adjunction Formula.- §5. The Hodge Index Theorem.- References.- XIII Minimal Models for Curves over Dedekind Rings.- §1. Statement of the Minimal Models Theorem.- §2. Factorization Theorem.- §3. Statement of the Castelnuovo Criterion.- §4. Intersection Theory and Proper and Total Transforms.- §5. Exceptional Curves.- 5A. Intersection Properties.- 5B. Prime Divisors Satisfying the Castelnuovo Criterion.- §6. Proof of the Castelnuovo Criterion.- §7. Proof of the Minimal Models Theorem.- References.- XIV Local Heights on Curves.- §1. Definitions and Notations.- §2. Néron’s Local Height Pairing.- §3. Construction of the Local Height Pairing.- §4. The Canonical Height.- §5. Local Heights for Divisors with Common Support.- §6. Local Heights for Divisors of Arbitrary Degree.- §7. Local Heights on Curves of Genus Zero.- §8. Local Heights on Elliptic Curves.- §9. Green’s Functions on the Upper Half-plane.- §10. Local Heights on Mumford Curves.- References.- XV A Higher Dimensional Mordell Conjecture.- §1. A Brief Introduction to Nevanlinna Theory.- §2. Correspondence with Number Theory.- §3. Higher Dimensional Nevanlinna Theory.- §4. Consequences of the Conjecture.- §5. Comparison with Faltings’ Proof.- References.
Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)