Artificial Neural Networks in Pattern Recognition: Second IAPR Workshop, ANNPR 2006, Ulm, Germany, August 31-September 2, 2006, Proceedings

Overview

This book constitutes the refereed proceedings of the Second IAPR Workshop on Artificial Neural Networks in Pattern Recognition, ANNPR 2006, held in Ulm, Germany in August/September 2006. The 26 revised papers presented were carefully reviewed and selected from 49 submissions. The papers are organized in topical sections on unsupervised learning, semi-supervised learning, supervised learning, support vector learning, multiple classifier systems, visual object recognition, and ...

See more details below
Paperback (2006)
$74.34
BN.com price
(Save 24%)$99.00 List Price
Other sellers (Paperback)
  • All (9) from $25.00   
  • New (4) from $71.86   
  • Used (5) from $25.00   
Sending request ...

Overview

This book constitutes the refereed proceedings of the Second IAPR Workshop on Artificial Neural Networks in Pattern Recognition, ANNPR 2006, held in Ulm, Germany in August/September 2006. The 26 revised papers presented were carefully reviewed and selected from 49 submissions. The papers are organized in topical sections on unsupervised learning, semi-supervised learning, supervised learning, support vector learning, multiple classifier systems, visual object recognition, and data mining in bioinformatics.

Read More Show Less

Product Details

Table of Contents

Unsupervised Learning.- Simple and Effective Connectionist Nonparametric Estimation of Probability Density Functions.- Comparison Between Two Spatio-Temporal Organization Maps for Speech Recognition.- Adaptive Feedback Inhibition Improves Pattern Discrimination Learning.- Semi-supervised Learning.- Supervised Batch Neural Gas.- Fuzzy Labeled Self-Organizing Map with Label-Adjusted Prototypes.- On the Effects of Constraints in Semi-supervised Hierarchical Clustering.- A Study of the Robustness of KNN Classifiers Trained Using Soft Labels.- Supervised Learning.- An Experimental Study on Training Radial Basis Functions by Gradient Descent.- A Local Tangent Space Alignment Based Transductive Classification Algorithm.- Incremental Manifold Learning Via Tangent Space Alignment.- A Convolutional Neural Network Tolerant of Synaptic Faults for Low-Power Analog Hardware.- Ammonium Estimation in a Biological Wastewater Plant Using Feedforward Neural Networks.- Support Vector Learning.- Support Vector Regression Using Mahalanobis Kernels.- Incremental Training of Support Vector Machines Using Truncated Hypercones.- Fast Training of Linear Programming Support Vector Machines Using Decomposition Techniques.- Multiple Classifier Systems.- Multiple Classifier Systems for Embedded String Patterns.- Multiple Neural Networks for Facial Feature Localization in Orientation-Free Face Images.- Hierarchical Neural Networks Utilising Dempster-Shafer Evidence Theory.- Combining MF Networks: A Comparison Among Statistical Methods and Stacked Generalization.- Visual Object Recognition.- Object Detection and Feature Base Learning with Sparse Convolutional Neural Networks.- Visual Classification of Images by Learning Geometric Appearances Through Boosting.- An Eye Detection System Based on Neural Autoassociators.- Orientation Histograms for Face Recognition.- Data Mining in Bioinformatics.- An Empirical Comparison of Feature Reduction Methods in the Context of Microarray Data Classification.- Unsupervised Feature Selection for Biomarker Identification in Chromatography and Gene Expression Data.- Learning and Feature Selection Using the Set Covering Machine with Data-Dependent Rays on Gene Expression Profiles.

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)