Automorphisms and Derivations of Associative Rings / Edition 1

Hardcover (Print)
Buy New
Buy New from
Used and New from Other Sellers
Used and New from Other Sellers
from $198.05
Usually ships in 1-2 business days
(Save 26%)
Other sellers (Hardcover)
  • All (6) from $198.05   
  • New (5) from $198.05   
  • Used (1) from $336.24   


The theory of automorphisms and derivations of associative rings is a direct descendant of the development of classical Galois theory and the theory of invariants.

This volume presents a comprehensive overview of the methods and results of that theory, which has been greatly enriched during the last twenty years. Some of the material included appears for the first time.

Among the problems discussed in this book are the following: construction of a Galois theory for prime and semiprime rings and its application to domains and free algebras; investigation of the problems of the algebraic dependence of automorphisms and derivations; studies of the fixed rings for finite groups and rings of constants for differential Lie algebras acting on the rings; non-commutative invariants of linear groups; theorems of finite groups acting on modular lattices; actions of Hopf algebras.

The monograph is meant for specialists in algebra, but it can also be useful for a wider range of mathematicians. The inclusions in the book of the latest achievements on the structural theory of rings with generalized identities makes it desirable reading for graduate students as well.

Read More Show Less

Editorial Reviews

The theory of automorphisms and derivations of associative rings is a direct descendant of the development of classical Galois theory and the theory of invariants. Among the problems discussed: a Galois theory for prime and semiprime rings; algebraic dependence of automorphisms and derivations; fixed rings for finite groups; non- commutative invariants of linear groups; finite groups acting on modular lattices; actions of Hopf algebras. Written for specialists in algebra, but useful also for a wider range of mathematicians. Annotation c. Book News, Inc., Portland, OR (
Read More Show Less

Product Details

  • ISBN-13: 9780792313823
  • Publisher: Springer Netherlands
  • Publication date: 10/31/1991
  • Series: Mathematics and its Applications Series, #69
  • Edition description: 1991
  • Edition number: 1
  • Pages: 385
  • Product dimensions: 1.00 (w) x 6.14 (h) x 9.21 (d)

Table of Contents

1. Structure of Rings.- 1.1 Baer Radical and Semiprimeness.- 1.2 Automorphism Groups and Lie Differential Algebras.- 1.3 Bergman-Isaacs Theorem. Shelter Integrality.- 1.4 Martindale Ring of Quotients.- 1.5 The Generalized Centroid of a Semiprime Ring.- 1.6 Modules over a Generalized Centroid.- 1.7 Extension of Automorphisms to a Ring of Quotients. Conjugation Modules.- 1.8 Extension of Derivations to a Ring of Quotients.- 1.9 The Canonical Sheaf of a Semiprime Ring.- 1.10 Invariant Sheaves.- 1.11 The Metatheorem.- 1.12 Stalks of Canonical and Invariant Sheaves.- 1.13 Martindale’s Theorem.- 1.14 Quite Primitive Rings.- 1.15 Rings of Quotients of Quite Primitive Rings.- 2. On Algebraic Independence of Automorphisms And Derivations.- 2.0 Trivial Algebraic Dependences.- 2.1 The Process of Reducing Polynomials.- 2.2 Linear Differential Identities with Automorphisms.- 2.3 Multilinear Differential Identities with Automorphisms.- 2.4 Differential Identities of Prime Rings.- 2.5 Differential Identities of Semiprime Rings.- 2.6 Essential Identities.- 2.7 Some Applications: Galois Extentions of Pi-Rings; Algebraic Automorphisms and Derivations; Associative Envelopes of Lie-Algebras of Derivations.- 3. The Galois Theory of Prime Rings (The Case Of Automorphisms).- 3.1 Basic Notions.- 3.2 Some Properties of Finite Groups of Outer Automorphisms.- 3.3 Centralizers of Finite-Dimensional Algebras.- 3.4 Trace Forms.- 3.5 Galois Groups.- 3.6 Maschke Groups. Prime Dimensions.- 3.7 Bimodule Properties of Fixed Rings.- 3.8 Ring of Quotients of a Fixed Ring.- 3.9 Galois Subrings for M-Groups.- 3.10 Correspondence Theorems.- 3.11 Extension of Isomorphisms.- 4. The Galois Theory of Prime Rings (The Case Of Derivations).- 4.1 Duality for Derivations in the Multiplication Algebra.- 4.2 Transformation of Differential Forms.- 4.3 Universal Constants.- 4.4 Shirshov Finiteness.- 4.5 The Correspondence Theorem.- 4.6 Extension of Derivations.- 5. The Galois Theory of Semiprime Rings.- 5.1 Essential Trace Forms.- 5.2 Intermediate Subrings.- 5.3 The Correspondence Theorem for Derivations.- 5.4 Basic Notions of the Galois Theory of Semiprime Rings (the case of automorphisms).- 5.5 Stalks of an Invariant Sheaf for a Regular Group. Homogenous Idempotents.- 5.6 Principal Trace Forms.- 5.7 Galois Groups.- 5.8 Galois Subrings for Regular Closed Groups.- 5.9 Correspondence and Extension Theorems.- 5.10 Shirshov Finiteness. The Structure of Bimodules.- 6. Applications.- 6.1 Free Algebras.- 6.2 Noncommutative Invariants.- 6.3 Relations of a Ring with Fixed Rings.- A. Radicals of Algebras.- B. Units, Semisimple Artinian Rings, Essential Onesided Ideals.- C. Primitive Rings.- D. Quite Primitive Rings.- E. Goldie Rings.- F. Noetherian Rings.- G. Simple and Subdirectly Indecomposable Rings.- H. Prime Ideals. Montgomery Equivalence.- I. Modular Lattices.- J. The Maximal Ring of Quotients.- 6.4 Relations of a Semiprime Ring with Ring of Constants.- 6.5 Hopf Algebras.- References.
Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star


4 Star


3 Star


2 Star


1 Star


Your Rating:

Your Name: Create a Pen Name or

Barnes & Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation


  • - By submitting a review, you grant to Barnes & and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Terms of Use.
  • - Barnes & reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)