Bandwidth-Efficient Digital Modulation with Application to Deep-Space Communications / Edition 1

Hardcover (Print)
Buy New
Buy New from BN.com
$170.33
Used and New from Other Sellers
Used and New from Other Sellers
from $175.91
Usually ships in 1-2 business days
(Save 15%)
Other sellers (Hardcover)
  • All (6) from $175.91   
  • New (4) from $175.91   
  • Used (2) from $272.26   

Overview

An important look at bandwidth-efficient modulations with applications to today's Space program

Based on research and results obtained at the California Institute of Technology's Jet Propulsion Laboratory, this timely book defines, describes, and then delineates the performance (power and bandwidth) of digital communication systems that incorporate a wide variety of bandwidth-efficient modulations appropriate for the design and implementation of space communications systems.

The author compares the performance of these systems in the presence of a number of practical (non-ideal) transmitter and receiver characteristics such as modulator and phase imbalance, imperfect carrier synchronization, and transmitter nonlinearity. Although the material focuses on the deep space applications developed at the Jet Propulsion Laboratory, the presentation is sufficiently broad as to be applicable to a host of other applications dealing with RF communications.

An important contribution to the scientific literature, Bandwidth-Efficient Digital Modulation with Application to Deep Space Communications
* was commissioned by the JPL Deep Space Communications and Navigation System Center of Excellence
* highlights many NASA-funded technical contributions pertaining to deep space communications systems
* is a part of the prestigious Deep Space Communications and Navigation Series

The Deep Space Communications and Navigation Series is authored by scientists and engineers with extensive experience in astronautics, communications, and related fields. It lays the foundation for innovation in the areas of deep space navigation and communications by disseminating state-of-the-art knowledge in key technologies.

Read More Show Less

Product Details

Meet the Author

MARVIN K. SIMON is currently a Senior Research Engineer at the California Institute of Technology’s Jet Propulsion Laboratory, where for the past thirty-four years he has participated in vital research pertaining to the design of NASA’s deep space and near-earth missions. He has published over 170 papers and coauthored ten textbooks on related subjects.

Read More Show Less

Table of Contents

Foreword.

Preface.

Chapter 1: Introduction.

Chapter 2: Constant Envelope Modulations.

2.1 The Need for Constant Envelope.

2.2 Quadriphase-Shift-Keying and Offset (Staggered) Quadriphase-Shift-Keying.

2.3 Differentially Encoded QPSK and Offset (Staggered) QPSK.

2.4 /4-QPSK: A Variation of Differentially Encoded QPSK with Instantaneous Amplitude Fluctuation Halfway between That of QPSK and OQPSK.

2.5 Power Spectral Density Considerations.

2.6 Ideal Receiver Performance.

2.7 Performance in the Presence of  Nonideal Transmitters.

2.7.1 Modulator Imbalance and Amplifier Nonlinearity.

2.7.2 Data Imbalance.

2.8 Continuous Phase Modulation.

2.8.1 Full Response-MSK and SFSK.

2.8.2 Partial Response-Gaussian MSK.

2.9 Simulation Performance.

References.

Chapter 3: Quasi-Constant Envelope Modulations.

3.1 Brief Review of IJF-QPSK and SQORC and their Relation to FQPSK.

3.2 A Symbol-by-Symbol Cross-Correlator Mapping for FQPSK.

3.3 Enhanced FQPSK.

3.4 Interpretation of FQPSK as a Trellis-Coded Modulation.

3.5 Optimum Detection.

3.6 Suboptimum Detection.

3.6.1 Symbol-by-Symbol Detection.

3.6.2 Average Bit-Error Probability Performance.

3.6.3 Further Receiver Simplifications and FQPSK-B Performance.

3.7 Cross-Correlated Trellis-Coded Quadrature Modulation.

3.7.1 Description of the Transmitter.

3.7.2 Specific Embodiments.

3.8 Other Techniques.

3.8.1 Shaped Offset QPSK.

References.

Chapter 4: Bandwidth-Efficient Modulations with More Envelope Fluctuation.

4.1 Bandwidth-Efficient TCM with Prescribed Decoding Delay-Equal Signal Energie.

4.1.1 ISI-Based Transmitter Implementation.

4.1.2 Evaluation of the Power Spectral Density.

4.1.3 Optimizing the Bandwidth Efficiency.

4.2 Bandwidth-Efficient TCM with Prescribed Decoding Delay-Unequal Signal Energies.

References.

Chapter 5: Strictly Bandlimited Modulations with Large Envelope Fluctuation (Nyquist Signaling).

5.1 Binary Nyquist Signaling.

5.2 Multilevel and Quadrature Nyquist Signaling.

References.

Chapter 6: Summary.

6.1 Throughput Performance Comparisons.

References.

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)