Basic Algebra I: Second Edition / Edition 2

Basic Algebra I: Second Edition / Edition 2

by Nathan Jacobson
     
 

View All Available Formats & Editions

ISBN-10: 0486471896

ISBN-13: 9780486471891

Pub. Date: 06/22/2009

Publisher: Dover Publications


A classic text and standard reference for a generation, this volume and its companion are the work of an expert algebraist who taught at Yale for two decades. Nathan Jacobson's books possess a conceptual and theoretical orientation, and in addition to their value as classroom texts, they serve as valuable references.
Volume I explores all of the topics

Overview


A classic text and standard reference for a generation, this volume and its companion are the work of an expert algebraist who taught at Yale for two decades. Nathan Jacobson's books possess a conceptual and theoretical orientation, and in addition to their value as classroom texts, they serve as valuable references.
Volume I explores all of the topics typically covered in undergraduate courses, including the rudiments of set theory, group theory, rings, modules, Galois theory, polynomials, linear algebra, and associative algebra. Its comprehensive treatment extends to such rigorous topics as Lie and Jordan algebras, lattices, and Boolean algebras. Exercises appear throughout the text, along with insightful, carefully explained proofs. Volume II comprises all subjects customary to a first-year graduate course in algebra, and it revisits many topics from Volume I with greater depth and sophistication.

Product Details

ISBN-13:
9780486471891
Publisher:
Dover Publications
Publication date:
06/22/2009
Series:
Dover Books on Mathematics Series
Pages:
528
Sales rank:
312,041
Product dimensions:
6.10(w) x 9.20(h) x 0.90(d)

Related Subjects

Table of Contents

Preface xi

Preface to the First Edition xiii

Introduction: Concepts from set Theory. The Integers 1

0.1 The power set of a set 3

0.2 The Cartesian product set. Maps 4

0.3 Equivalence relations. Factoring a map through an equivalence relation 10

0.4 The natural numbers 15

0.5 The number system Z of integers 19

0.6 Some basic arithmetic facts about Z 22

0.7 A word on cardinal numbers 24

1 Monoids and Groups 26

1.1 Monoids of transformations and abstract monoids 28

1.2 Groups of transformations and abstract groups 31

1.3 Isomorphism. Cayley's theorem 36

1.4 Generalized associativity. Commutativity 39

1.5 Submonoids and subgroups generated by a subset. Cyclic groups 42

1.6 Cycle decomposition of permutations 48

1.7 Orbits. Cosets of a subgroup 51

1.8 Congruences. Quotient monoids and groups 54

1.9 Homomorphisms 58

1.10 Subgroups of a homomorphic image. Two basic isomorphism theorems 64

1.11 Free objects. Generators and relations 67

1.12 Groups acting on sets 71

1.13 Sylow's theorems 79

2 Rings 85

2.1 Definition and elementary properties 86

2.2 Types of rings 90

2.3 Matrix rings 92

2.4 Quaternions 98

2.5 Ideals, quotient rings 101

2.6 Ideals and quotient rings for Z 103

2.7 Homomorphisms of rings. Basic theorems 106

2.8 Anti-isomorphisms 111

2.9 Field of fractions of a commutative domain 115

2.10 Polynomial rings 119

2.11 Some properties of polynomial rings and applications 127

2.12 Polynomial functions 134

2.13 Symmetric polynomials 138

2.14 Factorial monoids and rings 140

2.15 Principal ideal domains and Euclidean domains 147

2.16 Polynomial extensions of factorial domains 151

2.17 "Rngs" (rings withoutunit) 155

3 Modules over a Principal Ideal Domain 157

3.1 Ring of endomorphisms of an abelian group 158

3.2 Left and right modules 163

3.3 Fundamental concepts and results 166

3.4 Free modules and matrices 170

3.5 Direct sums of modules 175

3.6 Finitely generated modules over a p.i.d. Preliminary results 179

3.7 Equivalence of matrices with entries in a p.i.d 181

3.8 Structure theorem for finitely generated modules over a p.i.d 187

3.9 Torsion modules, primary components, invariance theorem 189

3.10 Applications to abelian groups and to linear transformations 194

3.11 The ring of endomorphisms of a finitely generated module over a p.i.d 204

4 Galois Theory of Equations 210

4.1 Preliminary results, some old, some new 213

4.2 Construction with straight-edge and compass 216

4.3 Splitting field of a polynomial 224

4.4 Multiple roots 229

4.5 The Galois group. The fundamental Galois pairing 234

4.6 Some results on finite groups 244

4.7 Galois' criterion for solvability by radicals 251

4.8 The Galois group as permutation group of the roots 256

4.9 The general equation of the nth degree 262

4.10 Equations with rational coefficients and symmetric group as Galois group 267

4.11 Constructible regular n-gons 271

4.12 Transcendence of e and p. The Lindemann-Weierstrass theorem 277

4.13 Finite fields 287

4.14 Special bases for finite dimensional extensions fields 290

4.15 Traces and norms 296

4.16 Mod p reduction 301

5 Real Polynomial Equations and Inequalities 306

5.1 Ordered fields. Real closed fields 307

5.2 Sturm's theorem 311

5.3 Formalized Euclidean algorithm and Sturm's theorem 316

5.4 Elimination procedures. Resultants 322

5.5 Decision method for an algebraic curve 327

5.6 Tarski's theorem 335

6 Metric Vector Spaces and the Classical Groups 342

6.1 Linear functions and bilinear forms 343

6.2 Alternate forms 349

6.3 Quadratic forms and symmetric bilinear forms 354

6.4 Basic concepts of orthogonal geometry 361

6.5 Witt's cancellation theorem 367

6.6 The theorem of Cartan-Dieudonne 371

6.7 Structure of the general linear group GLn(F) 375

6.8 Structure of orthogonal groups 382

6.9 Symplectic geometry. The symplectic group 391

6.10 Orders of orthogonal and symplectic groups over a finite field 398

6.11 Postscript on hermitian forms and unitary geometry 401

7 Algebras over a Field 405

7.1 Definition and examples of associative algebras 406

7.2 Exterior algebras. Application to determinants 411

7.3 Regular matrix representations of associative algebras. Norms and traces 422

7.4 Change of base field. Transitivity of trace and norm 426

7.5 Non-associative algebras. Lie and Jordan algebras 430

7.6 Hurwitz' problem. Composition algebras 438

7.7 Frobenius' and Wedderburn's theorems on associative division algebras 451

8 Lattices and Boolean Algebras 455

8.1 Partially ordered sets and lattices 456

8.2 Distributivity and modularity 461

8.3 The theorem of Jordan-Holder-Dedekind 466

8.4 The lattice of subspaces of a vector space. Fundamental theorem of projective geometry 468

8.5 Boolean algebras 474

8.6 The Mobius function of a partially ordered set 480

Appendix 489

Index 493

Customer Reviews

Average Review:

Write a Review

and post it to your social network

     

Most Helpful Customer Reviews

See all customer reviews >