Basic Structures of Function Field Arithmetic / Edition 1

Basic Structures of Function Field Arithmetic / Edition 1

by David Goss
     
 

ISBN-10: 3540635416

ISBN-13: 9783540635413

Pub. Date: 11/25/1997

Publisher: Springer Berlin Heidelberg

From the reviews:"The book...is a thorough and very readable introduction to the arithmetic of function fields of one variable over a finite field, by an author who has made fundamental contributions to the field. It serves as a definitive reference volume, as well as offering graduate students with a solid understanding of algebraic number theory the

…  See more details below

Overview

From the reviews:"The book...is a thorough and very readable introduction to the arithmetic of function fields of one variable over a finite field, by an author who has made fundamental contributions to the field. It serves as a definitive reference volume, as well as offering graduate students with a solid understanding of algebraic number theory the opportunity to quickly reach the frontiers of knowledge in an important area of mathematics...The arithmetic of function fields is a universe filled with beautiful surprises, in which familiar objects from classical number theory reappear in new guises, and in which entirely new objects play important roles. Goss'clear exposition and lively style make this book an excellent introduction to this fascinating field." MR 97i:11062

Product Details

ISBN-13:
9783540635413
Publisher:
Springer Berlin Heidelberg
Publication date:
11/25/1997
Series:
Ergebnisse der Mathematik und ihrer Grenzgebiete Series
Edition description:
1st ed. 1996. Corr. 2nd printing 1997
Pages:
424
Product dimensions:
0.90(w) x 6.14(h) x 9.21(d)

Table of Contents

1. Additive Polynomials.- 1.1. Basic Properties.- 1.2. Classification of Additive Polynomials.- 1.3. The Moore Determinant.- 1.4. The Relationship Between k[x] and k{?}.- 1.5. The p-resultant.- 1.6. The Left and Right Division Algorithms.- 1.7. The—-adjoint of an Additive Polynomial.- 1.8. Dividing A1 by Finite Additive Groups.- 1.9. Analogs in Differential Equations/Algebra.- 1.10. Divisibility Theory.- 1.11. The Semi-invariants of Additive Polynomials.- 2. Review of Non-Archimedean Analysis.- 3. The Carlitz Module.- 3.1. Background.- 3.2. The Carlitz Exponential.- 3.3. The Carlitz Module.- 3.4. The Carlitz Logarithm.- 3.5. The Polynomials Ed(x).- 3.6. The Carlitz Module over Arbitrary A-fields.- 3.7. The Adjoint of the Carlitz Module.- 4. Drinfeld Modules.- 4.1. Introduction.- 4.2. Lattices and Their Exponential Functions.- 4.3. The Drinfeld Module Associated to a Lattice.- 4.4. The General Definition of a Drinfeld Module.- 4.5. The Height and Rank of a Drinfeld Module.- 4.6. Lattices and Drinfeld Modules over C?.- 4.7. Morphisms of Drinfeld Modules.- 4.8. Primality in F{?} and A.- 4.9. The Action of Ideals on Drinfeld Modules.- 4.10. The Reduction Theory of Drinfeld Modules.- 4.11. Review of Central Simple Algebra.- 4.12. Drinfeld Modules over Finite Fields.- 4.13. Rigidity of Drinfeld Modules.- 4.14. The Adjoint of a General Drinfeld Module.- 5. T-Modules.- 5.1. Vector Bundles.- 5.2. Sheaves and Differential Equations.- 5.3.—-sheaves.- 5.4. Basic Concepts of T-modules.- 5.5. Pure T-modules.- 5.6. Torsion Points.- 5.7. Tensor Products.- 5.8. The Tensor Powers of the Carlitz Module.- 5.9. Uniformization.- 5.10. The Tensor Powers of the Carlitz Module redux.- 5.11. Scattering Matrices.- 6. Shtukas.- 6.1. Review of Some Algebraic Geometry.- 6.2. The Shtuka Correspondence.- 7. Sign Normalized Rank 1 Drinfeld Modules.- 7.1. Class-fields as Moduli.- 7.2. Sign Normalization.- 7.3. Fields of Definition of Drinfeld Modules.- 7.4. The Normalizing Field.- 7.5. Division Fields.- 7.6. Principal Ideal Theorems.- 7.7. A Rank One Version of Serre’s Theorem.- 7.8. Classical Partial Zeta Functions.- 7.9. Unit Calculations.- 7.10. Period Computations.- 7.11. The Connection with Shtukas and Examples.- 8. L-series.- 8.1. The “Complex Plane” S?.- 8.2. Exponentiation of Ideals.- 8.3.—-adic Exponentiation of Ideals.- 8.4. Continuous Functions on—
p.- 8.5. Entire Functions on S?.- 8.6. L-series of Characteristic p Arithmetic.- 8.7. Formal Dirichlet Series.- 8.8. Estimates.- 8.9. L-series of Finite Characters.- 8.10. The Question of Local Factors.- 8.11. The Generalized Teichmüller Character.- 8.12. Special-values at Negative Integers.- 8.13. Trivial Zeroes.- 8.14. Applications to Class Groups.- 8.15. “Geometric” Versus “Arithmetic” Notions.- 8.16. The Arithmetic Criterion for Cyclicity.- 8.17. The “Geometric Artin Conjecture”.- 8.18. Special-values at Positive Integers.- 8.19. The Functional Equation of the Special-values.- 8.20. Applications to Class Groups.- 8.21. The Geometric Criterion for Cyclicity.- 8.22. Magic Numbers.- 8.23. Finiteness in Local and Global Fields.- 8.24. Towards a Theory of the Zeroes.- 8.25. Kapranov’s Higher Dimensional Theory.- 9.—-functions.- 9.1. Basic Properties of the Carlitz Factorial.- 9.2. Bernoulli-Carlitz Numbers.- 9.3. The—-ideal.- 9.4. The Arithmetic—-function.- 9.5. Functional Equations.- 9.6. Finite Interpolations.- 9.7. Another—-adic—-function.- 9.8. Gauss Sums.- 9.9. The Geometric? -function.- 10. Additional Topics.- 10.1. The Geometric Fermat Equation.- 10.2. Geometric Deligne Reciprocity and Solitons.- 10.3. The Tate Conjecture for Drinfeld Modules.- 10.4. Meromorphic Continuations of L-functions.- 10.5. The Structure of the A-module of Rational Points.- 10.6. Log-algebraicity and Special Points.- References.

Read More

Customer Reviews

Average Review:

Write a Review

and post it to your social network

     

Most Helpful Customer Reviews

See all customer reviews >