Basic Superfluids
Superfluidity is the jewel in the crown of low temperature physics. When temperatures are low enough, every substance in thermal equilibrium must become ordered. Since some materials remain fluid to the lowest temperatures, it is a fascinating question as to how this ordering can take place. One possibility is the formation of a superfluid state, a state in which there is macroscopic quantum order-effectively quantum mechanics in a tea-cup. The author develops and presents these ideas in the beginning of Basic Superfluids. The book assumes some basic knowledge of quantum, statistical and thermal physics, and builds on this background to give a readable introduction to the three superfluids of low temperature physics. A short chapter describing experimental techniques is included. The emphasis throughout is on physical principles rather than technical detail, with the aim of introducing the subject in an accessible yet authoritative way to final-year undergraduates or starting postgraduate students.
1100754146
Basic Superfluids
Superfluidity is the jewel in the crown of low temperature physics. When temperatures are low enough, every substance in thermal equilibrium must become ordered. Since some materials remain fluid to the lowest temperatures, it is a fascinating question as to how this ordering can take place. One possibility is the formation of a superfluid state, a state in which there is macroscopic quantum order-effectively quantum mechanics in a tea-cup. The author develops and presents these ideas in the beginning of Basic Superfluids. The book assumes some basic knowledge of quantum, statistical and thermal physics, and builds on this background to give a readable introduction to the three superfluids of low temperature physics. A short chapter describing experimental techniques is included. The emphasis throughout is on physical principles rather than technical detail, with the aim of introducing the subject in an accessible yet authoritative way to final-year undergraduates or starting postgraduate students.
82.99 Out Of Stock
Basic Superfluids

Basic Superfluids

by Tony Guenault
Basic Superfluids

Basic Superfluids

by Tony Guenault

Paperback

$82.99 
  • SHIP THIS ITEM
    Temporarily Out of Stock Online
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

Superfluidity is the jewel in the crown of low temperature physics. When temperatures are low enough, every substance in thermal equilibrium must become ordered. Since some materials remain fluid to the lowest temperatures, it is a fascinating question as to how this ordering can take place. One possibility is the formation of a superfluid state, a state in which there is macroscopic quantum order-effectively quantum mechanics in a tea-cup. The author develops and presents these ideas in the beginning of Basic Superfluids. The book assumes some basic knowledge of quantum, statistical and thermal physics, and builds on this background to give a readable introduction to the three superfluids of low temperature physics. A short chapter describing experimental techniques is included. The emphasis throughout is on physical principles rather than technical detail, with the aim of introducing the subject in an accessible yet authoritative way to final-year undergraduates or starting postgraduate students.

Product Details

ISBN-13: 9780748408924
Publisher: Taylor & Francis
Publication date: 11/28/2002
Series: Master's Series in Physics and Astronomy
Pages: 176
Product dimensions: 6.12(w) x 9.19(h) x (d)

Table of Contents

What Happens at Low Temperatures. Entropy, Ordering and the Third Law. The Third Law of Thermodynamics and Ordering. Ordering in Helium. What makes a superfluid? What makes a superfluid superfluid? Liquid T4He. Some properties of Liquid T4He in the two-fluid region. Elementary excitations and the critical verlocity. Quantum effects, verlocity and rotation. Thermal and mechanical effects revisited. Experimental Techniques. Cooling methods. Thermometry and thermal contact. Superconductivity. The basic properties of superconductors. The wave function and electrodynamics. BCS theory and its consequences. Some other properties of superconductors. Liquid T3He. Some theoretical ideas. Experimental properties of superfluid T3He. Superconductivity in other T3He systems.
From the B&N Reads Blog

Customer Reviews