Bayesian Modeling in Bioinformatics
Bayesian Modeling in Bioinformatics discusses the development and application of Bayesian statistical methods for the analysis of high-throughput bioinformatics data arising from problems in molecular and structural biology and disease-related medical research, such as cancer. It presents a broad overview of statistical inference, clustering, and classification problems in two main high-throughput platforms: microarray gene expression and phylogenic analysis.

The book explores Bayesian techniques and models for detecting differentially expressed genes, classifying differential gene expression, and identifying biomarkers. It develops novel Bayesian nonparametric approaches for bioinformatics problems, measurement error and survival models for cDNA microarrays, a Bayesian hidden Markov modeling approach for CGH array data, Bayesian approaches for phylogenic analysis, sparsity priors for protein-protein interaction predictions, and Bayesian networks for gene expression data. The text also describes applications of mode-oriented stochastic search algorithms, in vitro to in vivo factor profiling, proportional hazards regression using Bayesian kernel machines, and QTL mapping.

Focusing on design, statistical inference, and data analysis from a Bayesian perspective, this volume explores statistical challenges in bioinformatics data analysis and modeling and offers solutions to these problems. It encourages readers to draw on the evolving technologies and promote statistical development in this area of bioinformatics.

1101527199
Bayesian Modeling in Bioinformatics
Bayesian Modeling in Bioinformatics discusses the development and application of Bayesian statistical methods for the analysis of high-throughput bioinformatics data arising from problems in molecular and structural biology and disease-related medical research, such as cancer. It presents a broad overview of statistical inference, clustering, and classification problems in two main high-throughput platforms: microarray gene expression and phylogenic analysis.

The book explores Bayesian techniques and models for detecting differentially expressed genes, classifying differential gene expression, and identifying biomarkers. It develops novel Bayesian nonparametric approaches for bioinformatics problems, measurement error and survival models for cDNA microarrays, a Bayesian hidden Markov modeling approach for CGH array data, Bayesian approaches for phylogenic analysis, sparsity priors for protein-protein interaction predictions, and Bayesian networks for gene expression data. The text also describes applications of mode-oriented stochastic search algorithms, in vitro to in vivo factor profiling, proportional hazards regression using Bayesian kernel machines, and QTL mapping.

Focusing on design, statistical inference, and data analysis from a Bayesian perspective, this volume explores statistical challenges in bioinformatics data analysis and modeling and offers solutions to these problems. It encourages readers to draw on the evolving technologies and promote statistical development in this area of bioinformatics.

190.0 Out Of Stock
Bayesian Modeling in Bioinformatics

Bayesian Modeling in Bioinformatics

Bayesian Modeling in Bioinformatics

Bayesian Modeling in Bioinformatics

Hardcover

$190.00 
  • SHIP THIS ITEM
    Temporarily Out of Stock Online
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

Bayesian Modeling in Bioinformatics discusses the development and application of Bayesian statistical methods for the analysis of high-throughput bioinformatics data arising from problems in molecular and structural biology and disease-related medical research, such as cancer. It presents a broad overview of statistical inference, clustering, and classification problems in two main high-throughput platforms: microarray gene expression and phylogenic analysis.

The book explores Bayesian techniques and models for detecting differentially expressed genes, classifying differential gene expression, and identifying biomarkers. It develops novel Bayesian nonparametric approaches for bioinformatics problems, measurement error and survival models for cDNA microarrays, a Bayesian hidden Markov modeling approach for CGH array data, Bayesian approaches for phylogenic analysis, sparsity priors for protein-protein interaction predictions, and Bayesian networks for gene expression data. The text also describes applications of mode-oriented stochastic search algorithms, in vitro to in vivo factor profiling, proportional hazards regression using Bayesian kernel machines, and QTL mapping.

Focusing on design, statistical inference, and data analysis from a Bayesian perspective, this volume explores statistical challenges in bioinformatics data analysis and modeling and offers solutions to these problems. It encourages readers to draw on the evolving technologies and promote statistical development in this area of bioinformatics.


Product Details

ISBN-13: 9781420070170
Publisher: Taylor & Francis
Publication date: 09/03/2010
Series: Chapman & Hall/CRC Biostatistics Series , #34
Pages: 466
Product dimensions: 6.30(w) x 9.30(h) x 1.10(d)

About the Author

Dipak K. Dey is a professor and head of the Department of Statistics at the University of Connecticut.

Samiran Ghosh is an assistant professor in the Department of Mathematical Sciences at Indiana University-Purdue University.

Bani K. Mallick is a professor of statistics and director of the Bayesian Bioinformatics Laboratory at Texas A&M University.

Table of Contents

Estimation and Testing in Time-Course Microarray Experiments, Classification for Differential Gene Expression Using Bayesian Hierarchical Models, Applications of the Mode Oriented Stochastic Search (MOSS) for Discrete Multi-Way Data to Genome -Wide Studies, Nonparametric Bayesian Bioinformatics, Measurement Error Models for cDNA Microarray and Time-to-Event Data with Applications to Breast Cancer, Robust Inference for Differential Gene Expression, Hidden Markov Modeling of Array CGH Data, Recent Developments in Bayesian Phylogenetics, Gene Selection for the Identification of Biomarkers in High-Throughput Data, Sparsity Priors for Protein-Protein Interaction Predictions, Learning Bayesian Networks for Gene Expression Data, In Vitro to In Vivo Factor Profiling in Expression Genomics, Proportional Hazards Regression Using Bayesian Kernel Machines, Mixture Model for Protein Biomarker Discovery, and Bandopadhyay Bayesian Methods for Detecting Differentially Expressed and Empirical Bayes Methods for Spotted Microarray Data Bayesian Classification Method for QTL Mapping

What People are Saying About This

From the Publisher

New topics are explicitly and carefully introduced and the articles would be easy to read for researchers and graduate students. … This book would be an excellent reference for researchers and graduate students interested in learning about recently developed Bayesian approaches to genomic and proteomic data.
—Hisashi Noma, Biometrics, December 2012

This book offers a peek into the world of bioinformatics — the intricate data structures and challenging questions posed to bioinformaticians. … The book showcases what Bayesian methods offer bioinformatics high-throughput data. …The book editors are leading Bayesians and have assembled a broad collection of articles authored by distinguished Bayesian researchers. … A few articles introduce modern Bayesian approaches relevant for high-throughput data. These include well-written articles reviewing Dirichlet process priors and Bayesian kernel machines that bioinformatics researchers will enjoy. … a delightful plate of appetizers introducing the world of Bayesian bioinformatics. Bon appétit!
—Śaunak Sen, Australian & New Zealand Journal of Statistics, 2012

All the papers are well written, providing a good entry into the subject matter issues as well as Bayesian issues like choice of likelihood and prior. The biggest strength of the book is the variety of problems that can be addressed through microarray experiments. … this is a remarkable survey of different types of microarray data and analysis of such data.
—Jayanta K. Ghosh, International Statistical Review, 2012

Overall, the book is an interesting mix of methodology and applications relevant to bioinformatics. A particularly appealing feature is that many of the chapters use freely available datasets and software, providing links to obtain these. … I can recommend the book for anyone wishing to dip into a few of the interesting areas of current research in the field; the book has certainly whetted my appetite to explore some areas further.
—Matthew Sperrin, ISCB News, 52, December 2011

From the B&N Reads Blog

Customer Reviews