Bayesian Reasoning and Machine Learning

Hardcover (Print)
Buy New
Buy New from BN.com
$84.41
Used and New from Other Sellers
Used and New from Other Sellers
from $65.06
Usually ships in 1-2 business days
(Save 29%)
Other sellers (Hardcover)
  • All (11) from $65.06   
  • New (9) from $65.06   
  • Used (2) from $84.40   

Overview

Machine learning methods extract value from vast data sets quickly and with modest resources. They are established tools in a wide range of industrial applications, including search engines, DNA sequencing, stock market analysis, and robot locomotion, and their use is spreading rapidly. People who know the methods have their choice of rewarding jobs. This hands-on text opens these opportunities to computer science students with modest mathematical backgrounds. It is designed for final-year undergraduates and master's students with limited background in linear algebra and calculus. Comprehensive and coherent, it develops everything from basic reasoning to advanced techniques within the framework of graphical models. Students learn more than a menu of techniques, they develop analytical and problem-solving skills that equip them for the real world. Numerous examples and exercises, both computer based and theoretical, are included in every chapter. Resources for students and instructors, including a MATLAB toolbox, are available online.

Read More Show Less

Editorial Reviews

From the Publisher
"With approachable text, examples, exercises, guidelines for teachers, a MATLAB toolbox and an accompanying web site, Bayesian Reasoning and Machine Learning by David Barber provides everything needed for your machine learning course. Only students not included."
Jaakko Hollmén, Aalto University

"Barber has done a commendable job in presenting important concepts in probabilistic modeling and probabilistic aspects of machine learning. The chapters on graphical models form one of the clearest and most concise presentations I have seen. The book has wide coverage of probabilistic machine learning, including discrete graphical models, Markov decision processes, latent variable models, Gaussian process, stochastic and deterministic inference, among others. The material is excellent for advanced undergraduate or introductory graduate course in graphical models, or probabilistic machine learning. The exposition throughout the book uses numerous diagrams and examples, and the book comes with an extensive software toolbox - these will be immensely helpful for students and educators. It's also be a great resource for self-study for people with background knowledge in basic probability and linear algebra."
Arindam Banerjee, University of Minnesota

"I repeatedly get unsolicited comments from my students that the contents of this book have been very valuable in developing their understanding of machine learning. This book appeals to readers from many backgrounds, and is driven by examples of machine learning in action. Despite maintaining that level of accessibility, it does not avoid covering areas that are of practical use but often harder to explain. Neither does it shun a proper understanding of why the methods work; each chapter is a pointer to the overall probabilistic framework upon which these machine learning methods depend. My students praise this book because it is both coherent and practical, and because it makes fewer assumptions regarding the reader's statistical knowledge and confidence than many books in the field."
Amos Storkey, University of Edinburgh

"This book is an exciting addition to the literature on machine learning and graphical models. What makes it unique and interesting is that it provides a unified treatment of machine learning and related fields through graphical models, a framework of growing importance and popularity. Another feature of this book lies in its smooth transition from traditional artificial intelligence to modern machine learning. The book is well-written and truly pleasant to read. I believe that it will appeal to students and researchers with or without a solid mathematical background."
Zheng-Hua Tan, Aalborg University

Read More Show Less

Product Details

  • ISBN-13: 9780521518147
  • Publisher: Cambridge University Press
  • Publication date: 1/31/2012
  • Edition description: New Edition
  • Pages: 650
  • Sales rank: 520,675
  • Product dimensions: 7.60 (w) x 9.88 (h) x 1.46 (d)

Meet the Author

David Barber is Reader in Information Processing in the Department of Computer Science, University College London.

Read More Show Less

Table of Contents

Preface; Part I. Inference in Probabilistic Models: 1. Probabilistic reasoning; 2. Basic graph concepts; 3. Belief networks; 4. Graphical models; 5. Efficient inference in trees; 6. The junction tree algorithm; 7. Making decisions; Part II. Learning in Probabilistic Models: 8. Statistics for machine learning; 9. Learning as inference; 10. Naive Bayes; 11. Learning with hidden variables; 12. Bayesian model selection; Part III. Machine Learning: 13. Machine learning concepts; 14. Nearest neighbour classification; 15. Unsupervised linear dimension reduction; 16. Supervised linear dimension reduction; 17. Linear models; 18. Bayesian linear models; 19. Gaussian processes; 20. Mixture models; 21. Latent linear models; 22. Latent ability models; Part IV. Dynamical Models: 23. Discrete-state Markov models; 24. Continuous-state Markov models; 25. Switching linear dynamical systems; 26. Distributed computation; Part V. Approximate Inference: 27. Sampling; 28. Deterministic approximate inference; Appendix. Background mathematics; Bibliography; Index.

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)