Bioinformatics and Computational Biology Solutions Using R and Bioconductor / Edition 1

Bioinformatics and Computational Biology Solutions Using R and Bioconductor / Edition 1

by Robert Gentleman
     
 

Bioconductor is a widely used open source and open development software project for the analysis and comprehension of data arising from high-throughput experimentation in genomics and molecular biology. Bioconductor is rooted in the open source statistical computing environment R. This volume's coverage is broad and ranges across most of the key capabilities of the

See more details below

Overview

Bioconductor is a widely used open source and open development software project for the analysis and comprehension of data arising from high-throughput experimentation in genomics and molecular biology. Bioconductor is rooted in the open source statistical computing environment R. This volume's coverage is broad and ranges across most of the key capabilities of the Bioconductor project, including

importation and preprocessing of high-throughput data from microarray, proteomic, and flow cytometry platforms

curation and delivery of biological metadata for use in statistical modeling and interpretation

statistical analysis of high-throughput data, including machine learning and visualization,

modeling and visualization of graphs and networks.

The developers of the software, who are in many cases leading academic researchers, jointly authored chapters. All methods are illustrated with publicly available data, and a major section of the book is devoted to exposition of fully worked case studies.

This book is more than a static collection of descriptive text, figures, and code examples that were run by the authors to produce the text; it is a dynamic document. Code underlying all of the computations that are shown is made available on a companion website, and readers can reproduce every number, figure, and table on their own computers.

Robert Gentleman is Head of the Program in Computational Biology at the Fred Hutchinson Cancer Research Center in Seattle. He is one of the two authors of the original R system and a leading member of the R core team. Vincent Carey is Associate Professor of Medicine (Biostatistics), Channing Laboratory, Brigham and Women's Hospital, Harvard Medical School. Gentleman and Carey are co-founders of the Bioconductor project. Wolfgang Huber is Group Leader in the European Molecular Biology Laboratory at the European Bioinformatics Institute in Cambridge. He has made influential contributions to the error modeling of microarray data. Rafael Irizarry is Associate Professor of Biostatistics at the Johns Hopkins Bloomberg School of Public Health in Baltimore. He is co-developer of RMA and GCRMA, two of the most popular methodologies for preprocessing high-density oligonucleotide arrays. Sandrine Dudoit is Assistant Professor in the Department of Biostatistics at the University of California, Berkeley. She has made seminal discoveries in the fields of multiple testing and generalized cross-validation and spearheaded the deployment of these findings in applied genomic science.

Read More

Product Details

ISBN-13:
9780387251462
Publisher:
Springer New York
Publication date:
10/28/2005
Series:
Statistics for Biology and Health Series
Edition description:
2005
Pages:
474
Product dimensions:
6.46(w) x 9.56(h) x 1.21(d)

Related Subjects

Table of Contents

Preprocessing overview –W. Huber, R. A. Irizarry, R. Gentleman.- Preprocessing High-density Oligonucleotide Arrays –B. M. Bolstad, R. A. Irizarry, L. Gautier, Z. Wu.- Quality Assessment of Affymetrix GeneChip Data –B. M. Bolstad, F. Collin, J. Brettschneider, K. Simpson, L. Cope, R. Irizarry, T. P. Speed.- Preprocessing Two-color Spotted Arrays –Y. H. Yang and A. C. Paquet.- Cell-based assays–W. Huber and F. Hahne.- SELDI-TOF Mass Spectrometry Protein Data –X. Li, R. Gentleman, X. Lu, Q. Shi, J.D. Iglehart, L. Harris and A. Miron.- Meta-data Resources and Tools in Bioconductor–R. Gentleman, V. J. Carey, and J. Zhang .- Querying on line resources –V. J. Carey, D. Temple Lang, J. Gentry, J. Zhang and R.Gentleman.- Interactive Outputs –C. A. Smith, W. Huber and R. Gentleman.- Visualizing Data–W.Huber, X. Li and R. Gentleman.- Analysis overview–V.J. Carey and R. Gentleman.- Distance Measures in DNA Microarray Data Analysis–R. Gentleman, B. Ding, S. Dudoit, and J. Ibrahim.- Cluster Analysis of Genomic Data –K. S. Pollard and M. J. van der Laan.- Analysis of differential gene expression studies–D. Scholtens and A. von Heydebreck.- Multiple Testing Procedures: R multtest Package and Applications to Genomics –K. S. Pollard, S. Dudoit, and M. J. van der Laan.- Machine learning concepts and tools for statistical genomics–V. J. Carey.- Ensemble methods of computational inference –T. Hothorn, M. Dettling, P. Bühlmann.- Browser-Based Affymetrix Analysis and Annotation –C. A. Smith.- Introduction and motivating examples–R. Gentleman, W. Huber and V. J. Carey.- Graphs–W. Huber, R. Gentleman and V. J. Carey.-Bioconductor software for graphs –V. J. Carey, R. Gentleman, W. Huber and J. Gentry.- Case Studies using Graphs on Biological Data–R. Gentleman, D. Scholtens, B. Ding, V. J. Carey, and W. Huber.- Limma: Linear Models for Microarray Data –G. K. Smyth.- Classification with Gene Expression Data –M. Dettling.- From Cel files to annotated lists of interesting genes –R. A. Irizarry

Read More

Customer Reviews

Average Review:

Write a Review

and post it to your social network

     

Most Helpful Customer Reviews

See all customer reviews >