Biological Applications of Microfluidics / Edition 1

Hardcover (Print)
Used and New from Other Sellers
Used and New from Other Sellers
from $122.00
Usually ships in 1-2 business days
(Save 23%)
Other sellers (Hardcover)
  • All (6) from $122.00   
  • New (5) from $122.00   
  • Used (1) from $125.84   


Microfluidic systems have been shown to have great potential in a diverse array of biological applications including biomolecular separations, enzymatic assays, immunhybridization reactions, and the polymerase chain reaction. The use of nanoliter reaction volumes and parallel sample processing are potential advantages of microfluidic devices, making them ideally suited to chemical analysis, high-throughput screening applications, and other cases where reagents are limited. The goal of this book is to detail some of the most recent advances in the biological applications of microfluidics given its now widespread utilization in many fields of science.

Read More Show Less

Editorial Reviews

From the Publisher
"The book has a relatively comprehensive coverage of active areas in the field, and so would serve these markets well." (The Quarterly Review of Biology, September 2010)
Read More Show Less

Product Details

  • ISBN-13: 9780470074831
  • Publisher: Wiley
  • Publication date: 1/18/2008
  • Edition description: New Edition
  • Edition number: 1
  • Pages: 533
  • Product dimensions: 6.48 (w) x 9.37 (h) x 1.26 (d)

Meet the Author

Frank A. Gomez, PhD, is the Director of the CSULA-Caltech Partnership for Research and Education in Materials (PREM) Collaborative. He is a Professor in the Department of Chemistry and Biochemistry at California State University, Los Angeles, and a Visiting Research Associate at the California Institute of Technology.

Read More Show Less

Table of Contents



1 Microfluidics.

1.1 Microfluidics.


2 Using Microfluidics to Understand and Control the Cellular Microenvironment.

2.1 Introduction: Engineering the Microenvironment.

2.2 The Chemical Microenvironment.

2.3 The Mechanical Microenvironment.

2.4 Conclusion.

3 Microfabricated Devices for Cell Sorting.

3.1 Introduction.

3.2 Microfabricated Formats for Cell Sorting.

3.3 Outlook for the Future.

4 Advanced Microfluidic Tools for Single-Cell Manipulation and Analysis.

4.1 Introduction.

4.2 Fluidic Control.

4.3 Temperature Control.

4.4 Cell Manipulation.

4.5 Detection.

4.6 Integration.

4.7 Conclusions.

5 Engineering Cellular Microenvironments with Microfluidics.

5.1 Introduction.

5.2 Microfluidic Cultures can Simulate in vivo Microenvironments.

5.3 Other Useful Capabilities of Microfluidic Cell Culture Devices.

5.4 Microfluidic Devices Useful for Cell Applications Other than Culture.

5.5 Future Prospects for Biological Studies in Microfluidic Bioreactors.

6 Microfluidic Culture Platforms for Stem Cell and Neuroscience Research.

6.1 Introduction.

6.2 Applications for Stem Cell Research.

6.3 Applications for Neuroscience Research.

6.4 Summary and Future Directions.


7 Microfluidics for Studying Enzyme Inhibition.

7.1 Enzyme Assays and Inhibition.

7.2 Microfluidic Assays for Enzymes and Enzyme Inhibition.

7.3 Enzyme Inhibition Studies in Microfluidic Devices: Specific Studies.

8 Chemical Synthesis within Continuous Flow Microreactors.

8.1 Introduction.

8.2 Advantages of Performing Chemical Synthesis in Microreactors.

8.3 Chemical Synthesis in Microreactors.

8.4 Large-Scale Manufacture Using Microreactors.

8.5 Conclusions.

9 Microfluidic Reactors for Sequential and Parallel Reactions.

9.1 Introduction.

9.2 Sequential Reactions in Microfluidic Devices.

9.3 Parallel Reactions in Microfluidic Devices.

9.4 Conclusions.

10 Gene Isolation, Gene Transformation, and Enzyme Reaction on a Chip.

10.1 Introduction.

10.2 DNA/RNA Isolation on a Microfluidic Chip.

10.3 Gene Ligation on a Microfluidic Chip.

10.4 Gene Transformation on a Chip.

10.5 Enzymatic Reaction on a Chip.

10.6 Summary and Perspective.


11 Chemical Monitoring in Complex Biological Environments Using Separation-Based Sensors in Chips.

11.1 Separation-Based Sensors.

11.2 Fast Separations with Separation-Based Sensors.

11.3 Micro Total Analysis Systems with Electrophoretic Separations for Monitoring of Biological Systems.

11.4 Miniaturization and Integration of Separation-Based Sensor Components.

12 Analytical Strategies Toward the Analysis of Phenolic Compounds (Capillary Electrophoresis and Microchip Capillary).


12.1 Introduction.

12.2 Experimental Section.

12.3 Results and Discussion.

12.4 Applications.

12.5 Conclusions.

13 Chemical Separations in 3D Microfluidics.

13.1 Introduction.

13.2 Fabrication.

13.3 Results and Discussion on 3D Valves.

13.4 Microfluidic Three-Dimensional Separation Columns.

13.5 Results on Liquid Chromatography.

13.6 Conclusions.

14 Enabling Fundamental Research in Proteomics.

14.1 Introduction.

14.2 Membrane Protein Extraction.

14.3 Conclusion.


15 Microengineering Neural Development.

15.1 Introduction.

15.2 Microengineering Guidance of Axons to their Targets.

15.3 Synaptogenesis on a Microfluidic Chip.

15.4 Conclusions.

16 Applications of Centrifugal Microfluidics in Biology.

16.1 Introduction.

16.2 Why Use Centrifugal Force for Fluid Manipulation?

16.3 How Centrifugal Microfluidic Platforms Work.

16.4 CD Applications.

16.5 Conclusions.

17 Microfluidic Techniques for Point-of-Care In Vitro Diagnostics.

17.1 Introduction.

17.2 Microfluidic Immunoassays.

17.3 Microfluidic Vias and Derivative Applications.

17.4 Conclusions.


18 Fabrication of Polymeric Microfluidic Devices.

18.1 Introduction.

18.2 Glass- and Silicon-Based Materials.

18.3 Plastics and Polymeric Materials.

18.4 Approaches to Microfabrication.

18.5 Selected Microfabrication Techniques.

18.6 Conclusions.

19 Nano Fountain Pen: Toward Integrated, Portable, Lab-on-Chip Devices.

19.1 Introduction.

19.2 Nano Fountain Pen.

19.3 Protein Printing.

19.4 Enzyme Lithography.

19.5 Polymer Microlenses.

19.6 Conclusions.

20 Surface Engineering of Microfluidic Devices Using Reactive Polymer Coatings.

20.1 Introduction.

20.2 Microfluidics Surface Modification Techniques.

20.3 Conclusions.

21 Microchips Containing In Situ Patterned Polymeric Media for Biochemical Analysis.

21.1 Introduction and Scope.

21.2 General Information about Patterned Materials.

21.3 Photopatterned Materials for Protein Analysis.

21.4 DNA Purification and Analysis.

21.5 Patterned Materials for Cell Culture and Analysis.

21.6 Other Biomolecules.

21.7 Conclusions.


22 Coupling Electrochemistry to Microfluidics.

22.1 Introduction.

22.2 Electrochemical Methods of Analysis.

22.3 Microfluidic Devices.

22.4 Applications.

22.5 Conclusions and Future Directions.

23 Manipulating Mass-Limited Samples Using Hybrid Microfluidic/Nanofluidic Networks.

23.1 Introduction.

23.2 Nanofluidics.

23.3 Hybrid Microfluidic/Nanofluidic Systems.

23.4 Functionalized NCAMs.

23.5 The Future.

24 Magnetic Bead-based Methods to Study the Interaction of Teicoplanin with Peptides and Bacteria.

24.1 Introduction.

24.2 Experimental.

24.3 Results and Discussion.

24.4 Conclusions.


25 Interfacing Microchannel Electrophoresis with Electrospray Ionization Mass Spectrometry.

25.1 Introduction.

25.2 Electrospray Ionization.

25.3 Coatings.

25.4 Spray Emitters.

25.5 CE and ESI Electrode Connections.

25.6 Integrated Applications.

25.7 Conclusions.


Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star


4 Star


3 Star


2 Star


1 Star


Your Rating:

Your Name: Create a Pen Name or

Barnes & Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation


  • - By submitting a review, you grant to Barnes & and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Terms of Use.
  • - Barnes & reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)