Biologically Inspired Algorithms for Financial Modelling / Edition 1

Biologically Inspired Algorithms for Financial Modelling / Edition 1

by Anthony Brabazon, Michael O'Neill
     
 

View All Available Formats & Editions

ISBN-10: 3642065732

ISBN-13: 9783642065736

Pub. Date: 12/15/2009

Publisher: Springer Berlin Heidelberg

Predicting the future for financial gain is a difficult, sometimes profitable activity. The focus of this book is the application of biologically inspired algorithms (BIAs) to financial modelling. In a detailed introduction, the authors explain computer trading on financial markets and the difficulties faced in financial market modelling. Then Part I provides a

Overview

Predicting the future for financial gain is a difficult, sometimes profitable activity. The focus of this book is the application of biologically inspired algorithms (BIAs) to financial modelling. In a detailed introduction, the authors explain computer trading on financial markets and the difficulties faced in financial market modelling. Then Part I provides a thorough guide to the various bioinspired methodologies neural networks, evolutionary computing (particularly genetic algorithms and grammatical evolution), particle swarm and ant colony optimization, and immune systems. Part II brings the reader through the development of market trading systems. Finally, Part III examines real-world case studies where BIA methodologies are employed to construct trading systems in equity and foreign exchange markets, and for the prediction of corporate bond ratings and corporate failures. The book was written for those in the finance community who want to apply BIAs in financial modelling, and for computer scientists who want an introduction to this growing application domain.

Product Details

ISBN-13:
9783642065736
Publisher:
Springer Berlin Heidelberg
Publication date:
12/15/2009
Series:
Natural Computing Series
Edition description:
Softcover reprint of hardcover 1st ed. 2006
Pages:
277
Product dimensions:
6.10(w) x 9.10(h) x 0.80(d)

Table of Contents

Methodologies.- Neural Network Methodologies.- Evolutionary Methodologies.- Grammatical Evolution.- The Particle Swarm Model.- Ant Colony Models.- Artificial Immune Systems.- Model Development.- Model Development Process.- Technical Analysis.- Case Studies.- Overview of Case Studies.- Index Prediction Using MLPs.- Index Prediction Using a MLP-GA Hybrid.- Index Trading Using Grammatical Evolution.- Adaptive Trading Using Grammatical Evolution.- Intra-day Trading Using Grammatical Evolution.- Automatic Generation of Foreign Exchange Trading Rules.- Corporate Failure Prediction Using Grammatical Evolution.- Corporate Failure Prediction Using an Ant Model.- Bond Rating Using Grammatical Evolution.- Bond Rating Using AIS.- Wrap-up.

Customer Reviews

Average Review:

Write a Review

and post it to your social network

     

Most Helpful Customer Reviews

See all customer reviews >