Biostatistical Design and Analysis Using R / Edition 1

Biostatistical Design and Analysis Using R / Edition 1

4.0 2
by Murray Logan
     
 

ISBN-10: 1405190086

ISBN-13: 9781405190084

Pub. Date: 05/17/2010

Publisher: Wiley

R — the statistical and graphical environment is rapidly emerging as an important set of teaching and research tools for biologists. This book draws upon the popularity and free availability of R to couple the theory and practice of biostatistics into a single treatment, so as to provide a textbook for biologists learning statistics, R, or both. An abridged

…  See more details below

Overview

R — the statistical and graphical environment is rapidly emerging as an important set of teaching and research tools for biologists. This book draws upon the popularity and free availability of R to couple the theory and practice of biostatistics into a single treatment, so as to provide a textbook for biologists learning statistics, R, or both. An abridged description of biostatistical principles and analysis sequence keys are combined together with worked examples of the practical use of R into a complete practical guide to designing and analyzing real biological research.

Topics covered include:

  • simple hypothesis testing, graphing
  • exploratory data analysis and graphical summaries
  • regression (linear, multi and non-linear)
  • simple and complex ANOVA and ANCOVA designs (including nested, factorial, blocking, spit-plot and repeated measures)
  • frequency analysis and generalized linear models.

Linear mixed effects modeling is also incorporated extensively throughout as an alternative to traditional modeling techniques.

The book is accompanied by a companion website www.wiley.com/go/logan/r with an extensive set of resources comprising all R scripts and data sets used in the book, additional worked examples, the biology package, and other instructional materials and links.

Read More

Product Details

ISBN-13:
9781405190084
Publisher:
Wiley
Publication date:
05/17/2010
Edition description:
New Edition
Pages:
576
Product dimensions:
6.70(w) x 9.60(h) x 1.20(d)

Table of Contents

Preface.

R quick reference card.

General key to statistical methods.

1 Introduction to R.

1.1 Why R?

1.2 Installing R.

1.3 The R environment.

1.4 Object names.

1.5 Expressions, Assignment and Arithmetic.

1.6 R Sessions and workspaces.

1.7 Getting help.

1.8 Functions.

1.9 Precedence.

1.10 Vectors - variables.

1.11 Matrices, lists and data frames.

1.12 Object information and conversion.

1.13 Indexing vectors, matrices and lists.

1.14 Pattern matching and replacement (character search and replace).

1.15 Data manipulation.

1.16 Functions that perform other functions repeatedly.

1.17 Programming in R.

1.18 An introduction to the R graphical environment.

1.19 Packages.

1.20 Working with scripts.

1.21 Citing R in publications.

1.22 Further reading.

2 Datasets.

2.1 Constructing data frames.

2.2 Reviewing a data frame - fix().

2.3 Importing (reading) data.

2.4 Exporting (writing) data.

2.5 Saving and loading of R objects.

2.6 Data frame vectors.

2.7 Manipulating data sets.

2.8 Dummy data sets - generating random data.

3 Introductory statistical principles.

3.1 Distributions.

3.2 Scale transformations.

3.3 Measures of location.

3.4 Measures of dispersion and variability.

3.5 Measures of the precision of estimates - standard errors and confidence intervals.

3.6 Degrees of freedom.

3.7 Methods of estimation.

3.8 Outliers.

3.9 Further reading.

4 Sampling and experimental design with R.

4.1 Random sampling.

4.2 Experimental design.

5 Graphical data presentation.

5.1 The plot() function.

5.2 Graphical Parameters.

5.3 Enhancing and customizing plots with low-level plotting functions.

5.4 Interactive graphics.

5.5 Exporting graphics.

5.6 Working with multiple graphical devices.

5.7 High-level plotting functions for univariate (single variable) data.

5.8 Presenting relationships.

5.9 Presenting grouped data.

5.10 Presenting categorical data.

5.11 Trellis graphics.

6 Simple hypothesis testing – one and two population tests.

6.1 Hypothesis testing.

6.2 One- and two-tailed tests.

6.3 t-tests.

6.4 Assumptions.

6.5 Statistical decision and power.

6.6 Robust tests.

6.7 Further reading.

6.8 Key for simple hypothesis testing.

6.9 Worked examples of real biological data sets.

7 Introduction to Linear models.

7.1 Linear models.

7.2 Linear models in R.

7.3 Estimating linear model parameters.

7.4 Comments about the importance of understanding the structure and parameterization of linear models.

8 Correlation and simple linear regression.

8.1 Correlation.

8.2 Simple linear regression.

8.3 Smoothers and local regression.

8.4 Correlation and regression in R.

8.5 Further reading.

8.6 Key for correlation and regression.

8.7 Worked examples of real biological data sets.

9 Multiple and curvilinear regression.

9.1 Multiple linear regression.

9.2 Linear models.

9.3 Null hypotheses.

9.4 Assumptions.

9.5 Curvilinear models.

9.6 Robust regression.

9.7 Model selection.

9.8 Regression trees.

9.9 Further reading.

9.10 Key and analysis sequence for multiple and complex regression.

9.11 Worked examples of real biological data sets.

10 Single factor classification (ANOVA).

10.0.1 Fixed versus random factors.

10.1 Null hypotheses.

10.2 Linear model.

10.3 Analysis of variance.

10.4 Assumptions.

10.5 Robust classification (ANOVA).

10.6 Tests of trends and means comparisons.

10.7 Power and sample size determination.

10.8 ANOVA in R.

10.9 Further reading.

10.10 Key for single factor classification (ANOVA).

10.11 Worked examples of real biological data sets.

11 Nested ANOVA.

11.1 Linear models.

11.2 Null hypotheses.

11.3 Analysis of variance.

11.4 Variance components.

11.5 Assumptions.

11.6 Pooling denominator terms.

11.7 Unbalanced nested designs.

11.8 Linear mixed effects models.

11.9 Robust alternatives.

11.10 Power and optimisation of resource allocation.

11.11 Nested ANOVA in R.

11.12 Further reading.

11.13 Key for nested ANOVA.

11.14 Worked examples of real biological data sets.

12 Factorial ANOVA.

12.1 Linear models.

12.2 Null hypotheses.

12.3 Analysis of variance.

12.4 Assumptions.

12.5 Planned and unplanned comparisons.

12.6 Unbalanced designs.

12.7 Robust factorial ANOVA.

12.8 Power and sample sizes.

12.9 Factorial ANOVA in R.

12.10 Further reading.

12.11 Key for factorial ANOVA.

12.12 Worked examples of real biological data sets.

13 Unreplicated factorial designs – randomized block and simple repeated measures.

13.1 Linear models.

13.2 Null hypotheses.

13.3 Analysis of variance.

13.4 Assumptions.

13.5 Specific comparisons.

13.6 Unbalanced un-replicated factorial designs.

13.7 Robust alternatives.

13.8 Power and blocking efficiency.

13.9 Unreplicated factorial ANOVA in R.

13.10 Further reading.

13.11 Key for randomized block and simple repeated measures ANOVA.

13.12 Worked examples of real biological data sets.

14 Partly nested designs: split plot and complex repeated measures.

14.1 Null hypotheses.

14.2 Linear models.

14.3 Analysis of variance.

14.4 Assumptions.

14.5 Other issues.

14.6 Further reading.

14.7 Key for partly nested ANOVA.

14.8 Worked examples of real biological data sets.

15 Analysis of covariance (ANCOVA).

15.1 Null hypotheses.

15.2 Linear models.

15.3 Analysis of variance.

15.4 Assumptions.

15.5 Robust ANCOVA.

15.6 Specific comparisons.

15.7 Further reading.

15.8 Key for ANCOVA.

15.9 Worked examples of real biological data sets.

16 Simple Frequency Analysis.

16.1 The chi-square statistic.

16.2 Goodness of fit tests.

16.3 Contingency tables.

16.4 G-tests.

16.5 Small sample sizes.

16.6 Alternatives.

16.7 Power analysis.

16.8 Simple frequency analysis in R.

16.9 Further reading.

16.10 Key for Analysing frequencies.

16.11 Worked examples of real biological data sets.

17 Generalized linear models (GLM).

17.1 Dispersion (over or under).

17.2 Binary data - logistic (logit) regression.

17.3 Count data - Poisson generalized linear models.

17.4 Assumptions.

17.5 Generalized additive models (GAM's) - non-parametric GLM.

17.6 GLM and R.

17.7 Further reading.

17.8 Key for GLM.

17.9 Worked examples of real biological data sets.

Bibliography.

R index.

Statistics index.

Companion website for this book: wiley.com/go/logan/r

Read More

Customer Reviews

Average Review:

Write a Review

and post it to your social network

     

Most Helpful Customer Reviews

See all customer reviews >

Biostatistical Design and Analysis Using R 4 out of 5 based on 0 ratings. 2 reviews.
Anonymous More than 1 year ago
This is a really good book. I'm currently taking an Experimental Design Class using R and the class is basically the same material that is on the book. The book has easy to follow instructions for coding and basic explanation for the concepts. I definitely recommend it to anyone that has no experience with R and is looking to learn or people that want to expand their knowledge and have a go to book in case of emergencies!
Anonymous More than 1 year ago